Curien Gilles, Flori Serena, Villanova Valeria, Magneschi Leonardo, Giustini Cécile, Forti Giorgio, Matringe Michel, Petroutsos Dimitris, Kuntz Marcel, Finazzi Giovanni
Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Energie Atomique-Université Grenoble Alpes, UMR 1414 Institut National de la Recherche Agronomique (INRA) Biosciences and Biotechnology Institute of Grenoble (BIG), Commissariat à l'Energie Atomique (CEA) Grenoble, 38054 Grenoble cedex 9, France.
Fermentalg SA, F-33500 Libourne, France.
Plant Cell Physiol. 2016 Jul;57(7):1354-1363. doi: 10.1093/pcp/pcw048. Epub 2016 Mar 7.
In oxygenic photosynthesis, light produces ATP plus NADPH via linear electron transfer, i.e. the in-series activity of the two photosystems: PSI and PSII. This process, however, is thought not to be sufficient to provide enough ATP per NADPH for carbon assimilation in the Calvin-Benson-Bassham cycle. Thus, it is assumed that additional ATP can be generated by alternative electron pathways. These circuits produce an electrochemical proton gradient without NADPH synthesis, and, although they often represent a small proportion of the linear electron flow, they could have a huge importance in optimizing CO assimilation. In Viridiplantae, there is a consensus that alternative electron flow comprises cyclic electron flow around PSI and the water to water cycles. The latter processes include photosynthetic O reduction via the Mehler reaction at PSI, the plastoquinone terminal oxidase downstream of PSII, photorespiration (the oxygenase activity of Rubisco) and the export of reducing equivalents towards the mitochondrial oxidases, through the malate shuttle. In this review, we summarize current knowledge about the role of the water to water cycles in photosynthesis, with a special focus on their occurrence and physiological roles in microalgae.
在有氧光合作用中,光通过线性电子传递产生ATP和NADPH,即两个光系统(PSI和PSII)的串联活动。然而,这个过程被认为不足以在卡尔文-本森-巴斯姆循环中为碳同化提供每分子NADPH足够的ATP。因此,人们认为可以通过替代电子途径产生额外的ATP。这些循环产生一个没有NADPH合成的电化学质子梯度,并且,尽管它们通常只占线性电子流的一小部分,但它们在优化CO同化方面可能具有巨大的重要性。在绿色植物中,人们普遍认为替代电子流包括围绕PSI的循环电子流和水-水循环。后者的过程包括通过PSI处的梅勒反应进行光合O还原、PSII下游的质体醌末端氧化酶、光呼吸(Rubisco的加氧酶活性)以及通过苹果酸穿梭将还原当量输出到线粒体氧化酶。在这篇综述中,我们总结了关于水-水循环在光合作用中作用的当前知识,特别关注它们在微藻中的发生情况和生理作用。