Suppr超能文献

当下游电子受体受到严重限制时,限制细胞色素 b6f 中的电子流动。

Restricting electron flow at cytochrome b6f when downstream electron acceptors are severely limited.

机构信息

Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA.

Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO 80401, USA.

出版信息

Plant Physiol. 2023 May 31;192(2):789-804. doi: 10.1093/plphys/kiad185.

Abstract

Photosynthetic organisms frequently experience abiotic stress that restricts their growth and development. Under such circumstances, most absorbed solar energy cannot be used for CO2 fixation and can cause the photoproduction of reactive oxygen species (ROS) that can damage the photosynthetic reaction centers of PSI and PSII, resulting in a decline in primary productivity. This work describes a biological "switch" in the green alga Chlamydomonas reinhardtii that reversibly restricts photosynthetic electron transport (PET) at the cytochrome b6f (Cyt b6f) complex when the capacity for accepting electrons downstream of PSI is severely limited. We specifically show this restriction in STARCHLESS6 (sta6) mutant cells, which cannot synthesize starch when they are limited for nitrogen (growth inhibition) and subjected to a dark-to-light transition. This restriction represents a form of photosynthetic control that causes diminished electron flow to PSI and thereby prevents PSI photodamage but does not appear to rely on a ΔpH. Furthermore, when electron flow is restricted, the plastid alternative oxidase (PTOX) becomes active, functioning as an electron valve that dissipates some excitation energy absorbed by PSII and allows the formation of a proton motive force (PMF) that would drive some ATP production (potentially sustaining PSII repair and nonphotochemical quenching [NPQ]). The restriction at the Cyt b6f complex can be gradually relieved with continued illumination. This study provides insights into how PET responds to a marked reduction in availability of downstream electron acceptors and the protective mechanisms involved.

摘要

光合生物经常会受到限制其生长和发育的非生物胁迫。在这种情况下,大部分吸收的太阳能不能用于 CO2 固定,并且会导致光产生活性氧(ROS),从而破坏 PSI 和 PSII 的光合作用反应中心,导致初级生产力下降。这项工作描述了绿藻莱茵衣藻中的一种生物“开关”,当 PSI 下游的电子接受能力受到严重限制时,该“开关”可在细胞色素 b6f(Cyt b6f)复合物处可逆地限制光合电子传递(PET)。我们特别在 STARCHLESS6(sta6)突变体细胞中显示了这种限制,当这些细胞受到氮限制(生长抑制)并经历从黑暗到光照的转变时,它们无法合成淀粉。这种限制代表了一种光合作用控制形式,它导致电子流向 PSI 减少,从而防止 PSI 光损伤,但似乎不依赖于 ΔpH。此外,当电子流受到限制时,质体替代氧化酶(PTOX)变得活跃,充当电子阀,耗散 PSII 吸收的部分激发能,并形成质子动力势(PMF),从而驱动一些 ATP 产生(可能维持 PSII 修复和非光化学猝灭[NPQ])。随着持续光照,Cyt b6f 复合物处的限制可以逐渐缓解。这项研究深入了解了 PET 如何响应下游电子受体可用性的显著减少以及涉及的保护机制。

相似文献

9
Photosynthetic control at the cytochrome b6f complex.光合控制在细胞色素 b6f 复合物。
Plant Cell. 2024 Oct 3;36(10):4065-4079. doi: 10.1093/plcell/koae133.
10
An original adaptation of photosynthesis in the marine green alga Ostreococcus.海洋绿藻奥氏藻光合作用的一种原始适应方式。
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7881-6. doi: 10.1073/pnas.0802762105. Epub 2008 May 29.

引用本文的文献

1
Regulation of Microalgal Photosynthetic Electron Transfer.微藻光合电子传递的调控
Plants (Basel). 2024 Jul 29;13(15):2103. doi: 10.3390/plants13152103.
2
Photosynthetic control at the cytochrome b6f complex.光合控制在细胞色素 b6f 复合物。
Plant Cell. 2024 Oct 3;36(10):4065-4079. doi: 10.1093/plcell/koae133.

本文引用的文献

1
An ancient function of PGR5 in iron delivery?PGR5 在铁传递方面的古老功能?
Trends Plant Sci. 2022 Oct;27(10):971-980. doi: 10.1016/j.tplants.2022.04.006. Epub 2022 May 24.
5
Calvin-Benson cycle regulation is getting complex.卡尔文-本森循环调节变得越来越复杂。
Trends Plant Sci. 2021 Sep;26(9):898-912. doi: 10.1016/j.tplants.2021.03.008. Epub 2021 Apr 20.
7
Cytochrome bf - Orchestrator of photosynthetic electron transfer.细胞色素 bf-光合电子传递的协调器。
Biochim Biophys Acta Bioenerg. 2021 May 1;1862(5):148380. doi: 10.1016/j.bbabio.2021.148380. Epub 2021 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验