Suppr超能文献

通过簇组装对纳米结构表面上的蛋白质和细胞相互作用进行定量控制。

Quantitative Control of Protein and Cell Interaction with Nanostructured Surfaces by Cluster Assembling.

机构信息

Centro Interdisciplinare Materiali e Interfacce Nanostrutturati (CIMAINA) e Dipartimento di Fisica, Università degli Studi di Milano , via Celoria 16, 20133 Milano, Italy.

CIMAINA e Dipartimento di Medicina Veterinaria, Università degli Studi di Milano , via Celoria 10, 20133 Milano, Italy.

出版信息

Acc Chem Res. 2017 Feb 21;50(2):231-239. doi: 10.1021/acs.accounts.6b00433. Epub 2017 Jan 24.

Abstract

The development of smart prosthetics, scaffolds, and biomaterials for tissue engineering and organ-on-a-chip devices heavily depends on the understanding and control of biotic/abiotic interfaces. In recent years, the nanometer scale emerged as the predominant dimension for processes impacting on protein adsorption and cellular responses on surfaces. In this context, the extracellular matrix (ECM) can be seen as the prototype for an intricate natural structure assembled by nanoscale building blocks forming highly variable nanoscale configurations, dictating cellular behavior and fate. How exactly the ECM nanotopography influences mechanotransduction, that is, the cellular capacity to convert information received from the ECM into appropriate responses, remains partially understood due to the complexity of the involved biological structures, limiting also the attempts to artificially reproduce the nanoscale complexity of the ECM. In this Account, we describe and discuss our strategies for the development of an efficient and large-scale bottom-up approach to fabricate surfaces with multiscale controlled disorder as substrates to study quantitatively the effect of nanoscale topography on biological entities. Our method is based on the use of supersonic cluster beam deposition (SCBD) to assemble, on a substrate, neutral clusters produced in the gas phase and accelerated by a supersonic expansion. The assembling of clusters in the ballistic deposition regime follows simple scaling laws, allowing the quantitative control of surface roughness and asperity layout over large areas. Due to their biocompatibility, we focused on transition metal oxide nanostructured surfaces assembled by titania and zirconia clusters. We demonstrated the engineering of structural and functional properties of the cluster-assembled surfaces with high relevance for interactions at the biotic/abiotic interface. We observed that isoelectric point and wettability, crucial parameters for the adhesion of biological entities on surfaces, are strongly influenced and controlled by the nanoscale roughness. By developing a high-throughput method (protein surface interaction microarray, PSIM), we characterized quantitatively the capacity of the nanostructured surfaces to adsorb proteins, showing that with increasing roughness the adsorption rises beyond what could be expected by the increase in specific area, paralleled by an almost linear decrease in protein binding affinity. We also determined that the spatial layout of the surface asperities effectively perceived by the cells mimics at the nanoscale the topographical ECM characteristics. The interaction with these features consequently regulates parameters significant for cell adhesion and mechanotransductive signaling, such as integrin clustering, focal adhesion maturation, and the correlated cellular mechanobiology, eventually impacting the cellular program and differentiation, as we specifically showed for neuronal cells.

摘要

智能假肢、支架和生物材料的发展对于组织工程和器官芯片设备至关重要,这主要依赖于对生物/非生物界面的理解和控制。近年来,纳米尺度成为影响表面蛋白质吸附和细胞反应的主要过程维度。在这种情况下,细胞外基质 (ECM) 可以被视为由纳米级构建块组装而成的复杂天然结构的原型,这些构建块形成高度可变的纳米级结构,决定着细胞的行为和命运。由于涉及的生物结构的复杂性,细胞外基质纳米形貌如何影响机械转导(即细胞将从细胞外基质接收到的信息转化为适当反应的能力)仍部分未知,这也限制了人工复制细胞外基质纳米复杂性的尝试。在本综述中,我们描述并讨论了我们开发有效且大规模的自下而上方法的策略,以制造具有多尺度控制无序的表面作为研究生物实体的纳米形貌对生物实体影响的基底。我们的方法基于使用超音速团束沉积(SCBD)在基底上组装气相中产生的中性团簇,并通过超音速膨胀加速。团簇在弹道沉积状态下的组装遵循简单的缩放规律,允许在大面积上定量控制表面粗糙度和凸起布局。由于它们的生物相容性,我们专注于由二氧化钛和氧化锆团簇组装的过渡金属氧化物纳米结构表面。我们证明了具有高生物界面相互作用相关性的团簇组装表面的结构和功能性质的工程设计。我们观察到等电点和润湿性(表面生物实体附着的关键参数)受到纳米粗糙度的强烈影响和控制。通过开发高通量方法(蛋白质表面相互作用微阵列,PSIM),我们定量地表征了纳米结构表面吸附蛋白质的能力,结果表明,随着粗糙度的增加,吸附量超过了表面积增加所预期的范围,同时蛋白质结合亲和力几乎呈线性下降。我们还确定了细胞有效感知的表面凸起的空间布局在纳米尺度上模拟了细胞外基质的拓扑特征。与这些特征的相互作用因此调节了与细胞黏附和机械转导信号相关的重要参数,例如整合素聚集、焦点黏附成熟以及相关的细胞机械生物学,最终影响细胞程序和分化,正如我们特别针对神经元细胞所示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验