Cronin Robert M, Fabbri Daniel, Denny Joshua C, Jackson Gretchen Purcell
Vanderbilt University Medical Center, Nashville, Tennessee.
AMIA Annu Symp Proc. 2015 Nov 5;2015:1861-70. eCollection 2015.
Patients have diverse health information needs, and secure messaging through patient portals is an emerging means by which such needs are expressed and met. As patient portal adoption increases, growing volumes of secure messages may burden healthcare providers. Automated classification could expedite portal message triage and answering. We created four automated classifiers based on word content and natural language processing techniques to identify health information needs in 1000 patient-generated portal messages. Logistic regression and random forest classifiers detected single information needs well, with area under the curves of 0.804-0.914. A logistic regression classifier accurately found the set of needs within a message, with a Jaccard index of 0.859 (95% Confidence Interval: (0.847, 0.871)). Automated classification of consumer health information needs expressed in patient portal messages is feasible and may allow direct linking to relevant resources or creation of institutional resources for commonly expressed needs.
患者有各种各样的健康信息需求,通过患者门户进行安全消息传递是表达和满足此类需求的一种新兴方式。随着患者门户使用率的提高,越来越多的安全消息可能会给医疗服务提供者带来负担。自动分类可以加快门户消息的分诊和回复。我们基于词内容和自然语言处理技术创建了四个自动分类器,以识别1000条患者生成的门户消息中的健康信息需求。逻辑回归和随机森林分类器能很好地检测单一信息需求,曲线下面积为0.804 - 0.914。一个逻辑回归分类器能准确找出消息中的需求集,杰卡德指数为0.859(95%置信区间:(0.847, 0.871))。对患者门户消息中表达的消费者健康信息需求进行自动分类是可行的,并且可能允许直接链接到相关资源或为常见需求创建机构资源。