Suppr超能文献

核受体与非酒精性脂肪性肝病

Nuclear receptors and nonalcoholic fatty liver disease.

作者信息

Cave Matthew C, Clair Heather B, Hardesty Josiah E, Falkner K Cameron, Feng Wenke, Clark Barbara J, Sidey Jennifer, Shi Hongxue, Aqel Bashar A, McClain Craig J, Prough Russell A

机构信息

Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; The KentuckyOne Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202, USA.

Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40202, USA.

出版信息

Biochim Biophys Acta. 2016 Sep;1859(9):1083-1099. doi: 10.1016/j.bbagrm.2016.03.002. Epub 2016 Mar 4.

Abstract

Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.

摘要

核受体是一类转录因子,可感知不断变化的环境或激素信号,并引发转录变化以调节核心生命功能,包括生长、发育和繁殖。为支持这一功能,在受到外源性物质的配体激活后,1 亚家族核受体(NR1s)成员可能与视黄酸 X 受体(RXR)形成异二聚体,以调节参与能量、外源性物质代谢和炎症的基因转录。其中一些受体,包括过氧化物酶体增殖物激活受体(PPARs)、孕烷和外源性物质受体(PXR)、组成型雄甾烷受体(CAR)、肝脏 X 受体(LXR)和法尼醇 X 受体(FXR),是肠道:肝脏:脂肪轴的关键调节因子,有助于协调进食和禁食状态下各器官系统之间的代谢反应。非酒精性脂肪性肝病(NAFLD)是最常见的肝脏疾病,可能进展为肝硬化甚至肝细胞癌。NAFLD 与核受体功能异常以及肠道:肝脏:脂肪轴的紊乱有关,包括肥胖、肠道通透性增加伴全身炎症、肝脏脂质代谢异常和胰岛素抵抗。环境化学物质可能通过直接与核受体相互作用使问题更加复杂,导致代谢紊乱,无法区分进食和禁食状态。本综述重点关注核受体在 NAFLD 发病机制和治疗中的作用。包括 PIVENS 和 FLINT 在内的临床试验表明,靶向核受体的疗法可能导致脂肪变性、炎症、纤维化、胰岛素抵抗、血脂异常和肥胖的矛盾性分离。目前正在开发的新策略(包括组织特异性配体和双受体激动剂)可能需要将核受体激活的有益作用与不良代谢副作用区分开来。核受体相互作用在 NAFLD 中的影响可能很大,但需要进一步阐明。本文是名为“外源性核受体:老狗新把戏”的特刊的一部分,由谢雯博士编辑。

相似文献

1
Nuclear receptors and nonalcoholic fatty liver disease.
Biochim Biophys Acta. 2016 Sep;1859(9):1083-1099. doi: 10.1016/j.bbagrm.2016.03.002. Epub 2016 Mar 4.
2
Modulation of xenobiotic nuclear receptors in high-fat diet induced non-alcoholic fatty liver disease.
Toxicology. 2018 Dec 1;410:199-213. doi: 10.1016/j.tox.2018.08.007. Epub 2018 Aug 16.
3
PXR- and CAR-mediated herbal effect on human diseases.
Biochim Biophys Acta. 2016 Sep;1859(9):1121-1129. doi: 10.1016/j.bbagrm.2016.02.009. Epub 2016 Feb 22.
4
Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes.
Biochim Biophys Acta. 2016 Sep;1859(9):1218-1227. doi: 10.1016/j.bbagrm.2016.03.007. Epub 2016 Mar 17.
5
RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome.
Biochim Biophys Acta. 2016 Sep;1859(9):1198-1217. doi: 10.1016/j.bbagrm.2016.04.010. Epub 2016 Apr 23.
6
The Therapeutic Role of Xenobiotic Nuclear Receptors Against Metabolic Syndrome.
Curr Drug Metab. 2019;20(1):15-22. doi: 10.2174/1389200219666180611083155.
7
Mechanisms of xenobiotic receptor activation: Direct vs. indirect.
Biochim Biophys Acta. 2016 Sep;1859(9):1130-1140. doi: 10.1016/j.bbagrm.2016.02.006. Epub 2016 Feb 10.
8
The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.
Mol Aspects Med. 2017 Aug;56:34-44. doi: 10.1016/j.mam.2017.04.004. Epub 2017 May 5.
9
Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells.
Drug Metab Dispos. 2018 Apr;46(4):326-335. doi: 10.1124/dmd.117.078675. Epub 2018 Jan 12.
10
Transcriptional Regulation of Metabolic Pathways via Lipid-Sensing Nuclear Receptors PPARs, FXR, and LXR in NASH.
Cell Mol Gastroenterol Hepatol. 2021;11(5):1519-1539. doi: 10.1016/j.jcmgh.2021.01.012. Epub 2021 Feb 2.

引用本文的文献

1
RXR modulates hepatic stellate cell activation and liver fibrosis by targeting CaMKK-AMPK axis.
Acta Pharm Sin B. 2025 Jul;15(7):3611-3631. doi: 10.1016/j.apsb.2025.05.023. Epub 2025 May 26.
2
Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation.
Eur J Clin Invest. 2025 Aug;55(8):e70059. doi: 10.1111/eci.70059. Epub 2025 May 15.
4
Environmental Pollutants, Occupational Exposures, and Liver Disease.
Semin Liver Dis. 2025 Jun;45(2):148-166. doi: 10.1055/a-2540-2861. Epub 2025 Mar 21.

本文引用的文献

1
Alcoholic, Nonalcoholic, and Toxicant-Associated Steatohepatitis: Mechanistic Similarities and Differences.
Cell Mol Gastroenterol Hepatol. 2015 Jun 3;1(4):356-367. doi: 10.1016/j.jcmgh.2015.05.006. eCollection 2015 Jul.
5
Role of farnesoid X receptor and bile acids in alcoholic liver disease.
Acta Pharm Sin B. 2015 Mar;5(2):158-67. doi: 10.1016/j.apsb.2014.12.011. Epub 2015 Mar 9.
6
The Prevalence of Non-Alcoholic Fatty Liver Disease in Children and Adolescents: A Systematic Review and Meta-Analysis.
PLoS One. 2015 Oct 29;10(10):e0140908. doi: 10.1371/journal.pone.0140908. eCollection 2015.
7
The identification of nuclear receptors associated with hepatic steatosis to develop and extend adverse outcome pathways.
Crit Rev Toxicol. 2016 Feb;46(2):138-52. doi: 10.3109/10408444.2015.1089471. Epub 2015 Oct 9.
8
CAR Suppresses Hepatic Gluconeogenesis by Facilitating the Ubiquitination and Degradation of PGC1α.
Mol Endocrinol. 2015 Nov;29(11):1558-70. doi: 10.1210/me.2015-1145. Epub 2015 Sep 25.
9
Genome-wide analysis of human constitutive androstane receptor (CAR) transcriptome in wild-type and CAR-knockout HepaRG cells.
Biochem Pharmacol. 2015 Nov 1;98(1):190-202. doi: 10.1016/j.bcp.2015.08.087. Epub 2015 Aug 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验