Suppr超能文献

一流的——6-MSA和I型博斯特里柯定聚酮化合物在……中的生物合成

First-class - biosynthesis of 6-MSA and bostrycoidin type I polyketides in .

作者信息

Bejenari Mihaela, Spedtsberg Eva Mie Lang, Mathiesen Julie, Jeppesen Alexandra Claire, Cernat Lucia, Toussaint Aouregane, Apostol Cristina, Stoianov Victor, Pedersen Tobias Bruun, Nielsen Mikkel Rank, Sørensen Jens Laurids

机构信息

Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark.

Department of Energy, Aalborg University, Esbjerg, Denmark.

出版信息

Front Fungal Biol. 2024 Mar 22;5:1327777. doi: 10.3389/ffunb.2024.1327777. eCollection 2024.

Abstract

Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast , an easily cultivable heterologous host. As an oleaginous yeast, displays a high flux of acetyl- and malonyl-CoA precursors used in lipid synthesis. Likewise, acetyl- and malonyl-CoA are the building blocks of many natural polyketides, and we explored the possibility of redirecting this flux toward polyketide production. Despite its promising prospect, has so far only been used for heterologous expression of simple type III polyketide synthases (PKSs) from plants. Therefore, we decided to evaluate the potential of by targeting the more complex fungal polyketides synthesized by type I PKSs. We employed a CRISPR-Cas9-mediated genome editing method to achieve markerless gene integration of the genes responsible for bostrycoidin biosynthesis in Fusarium solani (, , and ) and 6-methylsalicylic acid (6-MSA) biosynthesis in Aspergillus hancockii (6MSAS). Moreover, we attempted titer optimization through metabolic engineering by overexpressing two enzymes, TGL4 and AOX2, involved in lipid β-oxidation, but we did not observe an effect on polyketide production. With maximum titers of 403 mg/L 6-MSA and 35 mg/L bostrycoidin, the latter being substantially higher than our previous results in (2.2 mg/L), this work demonstrates the potential of as a platform for heterologous production of complex fungal polyketides.

摘要

真菌聚酮化合物是一大类次级代谢产物,因其多样的药理活性而具有重要价值。丝状真菌中的聚酮化合物生物合成面临一些挑战:产量低且纯度不高。为了解决这些问题,我们转而使用酵母,一种易于培养的异源宿主。作为一种产油酵母,它在脂质合成中展现出高流量的乙酰辅酶A和丙二酰辅酶A前体。同样,乙酰辅酶A和丙二酰辅酶A是许多天然聚酮化合物的组成单元,我们探索了将这种流量重新导向聚酮化合物生产的可能性。尽管前景广阔,但到目前为止,它仅被用于植物中简单的III型聚酮化合物合酶(PKSs)的异源表达。因此,我们决定通过靶向由I型PKSs合成的更复杂的真菌聚酮化合物来评估其潜力。我们采用了CRISPR-Cas9介导的基因组编辑方法,实现了负责茄丝核菌中波斯特菌素生物合成的基因(、和)以及汉氏曲霉中6-甲基水杨酸(6-MSA)生物合成的基因(6MSAS)的无标记基因整合。此外,我们试图通过代谢工程过表达参与脂质β-氧化的两种酶TGL4和AOX2来优化产量,但未观察到对聚酮化合物生产的影响。6-MSA的最高产量为403mg/L,波斯特菌素为35mg/L,后者显著高于我们之前在中的结果(2.2mg/L),这项工作证明了作为复杂真菌聚酮化合物异源生产平台的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2329/10995274/70fdb098e019/ffunb-05-1327777-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验