Jäger Janin, Klein Alexander, Buhmann Martin, Skrandies Wolfgang
Justus-Liebig-Universität Gießen, Lehrstuhl für Numerische Mathematik, Heinrich-Buff-Ring 44, 35392 Gießen, Germany.
Justus-Liebig-Universität Gießen, Physiologisches Institut, Aulweg 129, 35392 Gießen, Germany.
Clin Neurophysiol. 2016 Apr;127(4):1978-83. doi: 10.1016/j.clinph.2016.01.003. Epub 2016 Jan 25.
In this paper we introduce a new interpolation method to use for scalp potential interpolation. The predictive value of this new interpolation technique (the multiquadric method) is compared to commonly used interpolation techniques like nearest-neighbour averaging and spherical splines.
The method of comparison is cross-validation, where the data of one or two electrodes is predicted by the rest of the data. The difference between the predicted and the measured data is used to determine two error measures. One is the maximal error in one interpolation technique and the other is the mean square error. The methods are tested on data stemming from 30 channel EEG of 10 healthy volunteers.
The multiquadric interpolation methods performed best regarding both error measures and have been easier to calculate than spherical splines.
Multiquadrics are a good alternative to commonly used EEG reconstruction methods.
Multiquadrics have been widely used in reconstruction on sphere-like surfaces, but until now, the advantages have not been investigated in EEG reconstruction.
在本文中,我们介绍一种用于头皮电位插值的新插值方法。将这种新的插值技术(多重二次曲面法)的预测值与常用的插值技术(如最近邻平均法和球面样条法)进行比较。
比较方法为交叉验证,即通过其余数据预测一两个电极的数据。预测数据与测量数据之间的差异用于确定两个误差度量。一个是一种插值技术中的最大误差,另一个是均方误差。这些方法在来自10名健康志愿者的30通道脑电图数据上进行测试。
就两种误差度量而言,多重二次曲面插值方法表现最佳,并且比球面样条法更容易计算。
多重二次曲面法是常用脑电图重建方法的良好替代方法。
多重二次曲面法已广泛应用于类球表面的重建,但到目前为止,其在脑电图重建中的优势尚未得到研究。