Suppr超能文献

头皮地形图中插值误差的估计。

Estimation of interpolation errors in scalp topographic mapping.

作者信息

Fletcher E M, Kussmaul C L, Mangun G R

机构信息

Department of Computer Science, University of California, Davis 95616, USA.

出版信息

Electroencephalogr Clin Neurophysiol. 1996 May;98(5):422-34. doi: 10.1016/0013-4694(96)95135-4.

Abstract

Topographic maps are commonly constructed from electrical scalp recordings (such as EEGs and ERPs) using several different interpolation methods. It is important to determine the accuracy of such maps. Previous assessments of interpolation methods have been based on global error measures and the visual appearance of the topographic maps. However, the relationship of interpolation error to local contributing factors requires a more detailed analysis. In this paper, we use simulations to explore and quantify the relationship of error to global and local factors for different interpolation methods. We find that among the best interpolation methods, adequate electrode density is more important than the method used. For shallow sources, we show that local interpolation error is most correlated with potential gradient, and has a lesser correlation with distance to nearest electrode. The greatest correlation, however, is with the product of gradient and distance. Thus, interpolation error can be controlled locally by making the interelectrode distance inversely proportional to the expected potential gradient. With shallow sources, areas far from any electrode and having high apparent gradient are likely to have high interpolation error. Moreover, all areas far from any electrode may contain high interpolation errors, and should be interpreted with caution.

摘要

地形图通常是使用几种不同的插值方法从头皮电记录(如脑电图和事件相关电位)构建而成的。确定此类地图的准确性很重要。先前对插值方法的评估是基于全局误差度量和地形图的视觉外观。然而,插值误差与局部影响因素之间的关系需要更详细的分析。在本文中,我们使用模拟来探索和量化不同插值方法的误差与全局和局部因素之间的关系。我们发现,在最佳插值方法中,足够的电极密度比所使用的方法更重要。对于浅源,我们表明局部插值误差与电位梯度最相关,与到最近电极的距离相关性较小。然而,最大的相关性是与梯度和距离的乘积。因此,可以通过使电极间距离与预期电位梯度成反比来局部控制插值误差。对于浅源,远离任何电极且具有高表观梯度的区域可能具有高插值误差。此外,所有远离任何电极的区域可能都包含高插值误差,应谨慎解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验