Suppr超能文献

UTE磁共振成像中皮质骨特异性的改善。

Improved cortical bone specificity in UTE MR Imaging.

作者信息

Johnson Ethan M, Vyas Urvi, Ghanouni Pejman, Pauly Kim Butts, Pauly John M

机构信息

Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA.

出版信息

Magn Reson Med. 2017 Feb;77(2):684-695. doi: 10.1002/mrm.26160. Epub 2016 Mar 12.

Abstract

PURPOSE

Methods for direct visualization of compact bone using MRI have application in several "MR-informed" technologies, such as MR-guided focused ultrasound, MR-PET reconstruction and MR-guided radiation therapy. The specificity of bone imaging can be improved by manipulating image sensitivity to Bloch relaxation phenomena, facilitating distinction of bone from other tissues detected by MRI.

METHODS

From Bloch equation dynamics, excitation pulses suitable for creating specific sensitivity to short-T magnetization from cortical bone are identified. These pulses are used with UTE subtraction demonstrate feasibility of MR imaging of compact bone with positive contrast.

RESULTS

MR images of bone structures are acquired with contrast similar to that observed in x-ray CT images. Through comparison of MR signal intensities with CT Hounsfield units of the skull, the similarity of contrast is quantified. The MR technique is also demonstrated in other regions of the body that are relevant for interventional procedures, such as the shoulder, pelvis and leg.

CONCLUSION

Matching RF excitation pulses to relaxation rates improves the specificity to bone of short-T contrast. It is demonstrated with a UTE sequence to acquire images of cortical bone with positive contrast, and the contrast is verified by comparison with x-ray CT. Magn Reson Med 77:684-695, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

利用磁共振成像(MRI)直接可视化致密骨的方法在多种“MRI引导”技术中具有应用价值,如磁共振引导聚焦超声、磁共振正电子发射断层扫描(MR-PET)重建以及磁共振引导放射治疗。通过控制图像对布洛赫弛豫现象的敏感度,可提高骨成像的特异性,有助于在MRI检测到的其他组织中区分出骨组织。

方法

根据布洛赫方程动力学,确定了适合对皮质骨短T磁化产生特定敏感度的激发脉冲。这些脉冲与UTE减法相结合,证明了具有正性对比的致密骨MRI成像的可行性。

结果

获取的骨结构MR图像具有与X线计算机断层扫描(CT)图像相似的对比度。通过将MR信号强度与颅骨的CT亨氏单位进行比较,对对比度的相似性进行了量化。该MR技术还在与介入操作相关的身体其他部位得到了验证,如肩部、骨盆和腿部。

结论

使射频激发脉冲与弛豫率相匹配可提高短T对比度对骨的特异性。通过UTE序列获得了具有正性对比的皮质骨图像,并与X线CT进行比较验证了对比度。《磁共振医学》77:684 - 695, 2017。© 2016国际磁共振医学学会。

相似文献

1
Improved cortical bone specificity in UTE MR Imaging.
Magn Reson Med. 2017 Feb;77(2):684-695. doi: 10.1002/mrm.26160. Epub 2016 Mar 12.
2
PET attenuation correction using synthetic CT from ultrashort echo-time MR imaging.
J Nucl Med. 2014 Dec;55(12):2071-7. doi: 10.2967/jnumed.114.143958. Epub 2014 Nov 20.
7
Rapid dual-echo ramped hybrid encoding MR-based attenuation correction (dRHE-MRAC) for PET/MR.
Magn Reson Med. 2018 Jun;79(6):2912-2922. doi: 10.1002/mrm.26953. Epub 2017 Oct 2.
8
Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone.
Neuroimage. 2014 Jan 1;84:206-16. doi: 10.1016/j.neuroimage.2013.08.042. Epub 2013 Aug 29.
10
Magnetic Resonance-Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region.
Int J Radiat Oncol Biol Phys. 2015 Nov 1;93(3):497-506. doi: 10.1016/j.ijrobp.2015.07.001. Epub 2015 Jul 9.

引用本文的文献

1
UTE MRI technical developments and applications in osteoporosis: a review.
Front Endocrinol (Lausanne). 2025 Feb 6;16:1510010. doi: 10.3389/fendo.2025.1510010. eCollection 2025.
4
Neuroimaging in Nonsyndromic Craniosynostosis: Key Concepts to Unlock Innovation.
Diagnostics (Basel). 2024 Aug 23;14(17):1842. doi: 10.3390/diagnostics14171842.
5
Craniofacial Imaging of Pediatric Patients by Ultrashort Echo-Time Bone-Selective MRI in Comparison to CT.
Acad Radiol. 2024 Nov;31(11):4629-4642. doi: 10.1016/j.acra.2024.08.053. Epub 2024 Sep 6.
7
Model-based navigation of transcranial focused ultrasound neuromodulation in humans: Application to targeting the amygdala and thalamus.
Brain Stimul. 2024 Jul-Aug;17(4):958-969. doi: 10.1016/j.brs.2024.07.019. Epub 2024 Jul 31.
9
Bone Biomarkers Based on Magnetic Resonance Imaging.
Semin Musculoskelet Radiol. 2024 Feb;28(1):62-77. doi: 10.1055/s-0043-1776431. Epub 2024 Feb 8.

本文引用的文献

1
Zero TE MR bone imaging in the head.
Magn Reson Med. 2016 Jan;75(1):107-14. doi: 10.1002/mrm.25545. Epub 2015 Jan 16.
2
ZTE imaging with long-T2 suppression.
NMR Biomed. 2015 Feb;28(2):247-54. doi: 10.1002/nbm.3246. Epub 2014 Dec 18.
3
Transcranial phase aberration correction using beam simulations and MR-ARFI.
Med Phys. 2014 Mar;41(3):032901. doi: 10.1118/1.4865778.
4
CT substitute derived from MRI sequences with ultrashort echo time.
Med Phys. 2011 May;38(5):2708-14. doi: 10.1118/1.3578928.
5
Ultrashort echo time MRI of cortical bone at 7 tesla field strength: a feasibility study.
J Magn Reson Imaging. 2011 Sep;34(3):691-5. doi: 10.1002/jmri.22648. Epub 2011 Jul 18.
7
Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone.
J Magn Reson. 2010 Dec;207(2):304-11. doi: 10.1016/j.jmr.2010.09.013. Epub 2010 Sep 25.
8
Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging.
Magn Reson Med. 2010 Sep;64(3):680-7. doi: 10.1002/mrm.22459.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验