Suppr超能文献

相似文献

1
Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing.
Cell Syst. 2015 Sep 23;1(3):187-196. doi: 10.1016/j.cels.2015.08.013.
2
[Creation of synthetic bacterial viruses].
Nihon Saikingaku Zasshi. 2018;73(4):201-210. doi: 10.3412/jsb.73.201.
3
Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):567-572. doi: 10.1073/pnas.1714658115. Epub 2018 Jan 3.
4
Phage Engineering for Targeted Multidrug-Resistant .
Int J Mol Sci. 2023 Jan 27;24(3):2459. doi: 10.3390/ijms24032459.
6
Engineering of receptor-binding proteins in bacteriophages and phage tail-like bacteriocins.
Biochem Soc Trans. 2019 Feb 28;47(1):449-460. doi: 10.1042/BST20180172. Epub 2019 Feb 19.
7
Synthetic phage and its application in phage therapy.
Prog Mol Biol Transl Sci. 2023;200:61-89. doi: 10.1016/bs.pmbts.2023.03.009. Epub 2023 Jun 16.
8
Renaissance for Phage-Based Bacterial Control.
Environ Sci Technol. 2022 Apr 19;56(8):4691-4701. doi: 10.1021/acs.est.1c06232. Epub 2021 Nov 18.
9
A novel T4- and λ-based receptor binding protein family for bacteriophage therapy host range engineering.
Front Microbiol. 2022 Oct 31;13:1010330. doi: 10.3389/fmicb.2022.1010330. eCollection 2022.

引用本文的文献

1
Synthetic Biology-Based Engineering Living Therapeutics for Antimicrobial Application.
Exploration (Beijing). 2025 Apr 3;5(4):e20240045. doi: 10.1002/EXP.20240045. eCollection 2025 Aug.
2
High-resolution Cryo-EM Analysis of the Therapeutic Pseudomonas Phage Pa223.
J Mol Biol. 2025 Aug 12;437(21):169386. doi: 10.1016/j.jmb.2025.169386.
4
Armed Phages: A New Weapon in the Battle Against Antimicrobial Resistance.
Viruses. 2025 Jun 27;17(7):911. doi: 10.3390/v17070911.
5
Replacement of the Genomic Scaffold Improves the Replication Efficiency of Synthetic Phages.
Int J Mol Sci. 2025 Jul 16;26(14):6824. doi: 10.3390/ijms26146824.
6
Genomic insights into bacteriophages: a new frontier in AMR detection and phage therapy.
Brief Funct Genomics. 2025 Jan 15;24. doi: 10.1093/bfgp/elaf011.
8
Optimizing phage therapy with artificial intelligence: a perspective.
Front Cell Infect Microbiol. 2025 May 27;15:1611857. doi: 10.3389/fcimb.2025.1611857. eCollection 2025.

本文引用的文献

1
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.
Nat Biotechnol. 2014 Nov;32(11):1146-50. doi: 10.1038/nbt.3043. Epub 2014 Oct 5.
2
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases.
Nat Biotechnol. 2014 Nov;32(11):1141-5. doi: 10.1038/nbt.3011. Epub 2014 Sep 21.
3
CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages.
Nucleic Acids Res. 2014 Aug;42(14):9504-13. doi: 10.1093/nar/gku628. Epub 2014 Jul 24.
4
The yin and yang of bacterial resilience in the human gut microbiota.
J Mol Biol. 2014 Nov 25;426(23):3866-76. doi: 10.1016/j.jmb.2014.05.029. Epub 2014 Jun 6.
5
CRISPR/Cas9-mediated phage resistance is not impeded by the DNA modifications of phage T4.
PLoS One. 2014 Jun 2;9(6):e98811. doi: 10.1371/journal.pone.0098811. eCollection 2014.
6
Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
RNA Biol. 2014;11(1):42-4. doi: 10.4161/rna.27766. Epub 2014 Jan 22.
7
Microbiome and skin diseases.
Curr Opin Allergy Clin Immunol. 2013 Oct;13(5):514-20. doi: 10.1097/ACI.0b013e328364ebeb.
8
Structural characterization of the bacteriophage T7 tail machinery.
J Biol Chem. 2013 Sep 6;288(36):26290-26299. doi: 10.1074/jbc.M113.491209. Epub 2013 Jul 24.
9
Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction.
ACS Synth Biol. 2012 Sep 21;1(9):408-13. doi: 10.1021/sb300049p. Epub 2012 Jul 10.
10
The bacteriophage t7 virion undergoes extensive structural remodeling during infection.
Science. 2013 Feb 1;339(6119):576-9. doi: 10.1126/science.1231887. Epub 2013 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验