Suppr超能文献

基于单细胞共振拉曼光谱的流动式连续细胞分选。

Continuous cell sorting in a flow based on single cell resonance Raman spectra.

作者信息

McIlvenna David, Huang Wei E, Davison Paul, Glidle Andrew, Cooper Jon, Yin Huabing

机构信息

Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.

Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.

出版信息

Lab Chip. 2016 Apr 21;16(8):1420-9. doi: 10.1039/c6lc00251j.

Abstract

Single cell Raman spectroscopy measures a spectral fingerprint of the biochemistry of cells, and provides a powerful method for label-free detection of living cells without the involvement of a chemical labelling strategy. However, as the intrinsic Raman signals of cells are inherently weak, there is a significant challenge in discriminating and isolating cells in a flowing stream. Here we report an integrated Raman-microfluidic system for continuous sorting of a stream of cyanobacteria, Synechocystis sp. PCC6803. These carotenoid-containing microorganisms provide an elegant model system enabling us to determine the sorting accuracy using the subtly different resonance Raman spectra of microorganism cultured in a (12)C or (13)C carbon source. Central to the implementation of continuous flow sorting is the use of "pressure dividers" that eliminate fluctuations in flow in the detection region. This has enabled us to stabilise the flow profile sufficiently to allow automated operation with synchronisation of Raman acquisition, real-time classification and sorting at flow rates of ca. <100 μm s(-1), without the need to "trap" the cells. We demonstrate the flexibility of this approach in sorting mixed cell populations with the ability to achieve 96.3% purity of the selected cells at a speed of 0.5 Hz.

摘要

单细胞拉曼光谱可测量细胞生物化学的光谱指纹图谱,并提供一种强大的方法,用于在不涉及化学标记策略的情况下对活细胞进行无标记检测。然而,由于细胞的固有拉曼信号本身较弱,在流动流中区分和分离细胞存在重大挑战。在此,我们报告了一种集成拉曼-微流控系统,用于对蓝藻聚球藻属PCC6803的细胞流进行连续分选。这些含类胡萝卜素的微生物提供了一个出色的模型系统,使我们能够利用在(12)C或(13)C碳源中培养的微生物细微不同的共振拉曼光谱来确定分选准确性。连续流分选实施的核心是使用“压力分配器”,以消除检测区域中流动的波动。这使我们能够充分稳定流动剖面,从而在约<100 μm s(-1)的流速下实现拉曼采集、实时分类和分选的同步自动化操作,而无需“捕获”细胞。我们展示了这种方法在分选混合细胞群体方面的灵活性,能够以0.5 Hz的速度实现所选细胞96.3%的纯度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验