Suppr超能文献

不同纳米材料对疣孢青霉生长及霉菌毒素产生的影响

Influence of Different Nanomaterials on Growth and Mycotoxin Production of Penicillium verrucosum.

作者信息

Kotzybik Kathrin, Gräf Volker, Kugler Lena, Stoll Dominic A, Greiner Ralf, Geisen Rolf, Schmidt-Heydt Markus

机构信息

Department of Safety and Quality of Fruits and Vegetables, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany.

Department of Food Technology and Bioprocess Engineering, Federal Research Institute of Nutrition and Food, Max Rubner-Institut, Karlsruhe, Germany.

出版信息

PLoS One. 2016 Mar 14;11(3):e0150855. doi: 10.1371/journal.pone.0150855. eCollection 2016.

Abstract

Nanoparticles are ubiquitous in the environment. They originate from anthropogenic or natural sources or they are intentionally produced for different purposes. There exist manifold applications of nanoparticles in modern life leading unavoidably to a confrontation and interaction between nanomaterial and living organisms. Based on their wide distribution tending to increase steadily, the influence of particles based on silica and silver, exhibiting nominal sizes between 0.65 nm and 200 nm, on the physiology of the mycotoxigenic filamentous fungus Penicillium verrucosum was analyzed. The applied concentration and time-point, the size and the chemical composition of the particles was shown to have a strong influence on growth and mycotoxin biosynthesis. On microscopic scale it could be shown that silver nanoparticles attach to the mycelial surface. Moreover, silver nanoparticles with 0.65 nm and 5 nm in size were shown to internalize within the cell, form agglomerates in the cytoplasm and associate to cell organelles.

摘要

纳米颗粒在环境中无处不在。它们源于人为或自然来源,或者是为了不同目的而有意制造的。纳米颗粒在现代生活中有多种应用,这不可避免地导致了纳米材料与生物体之间的接触和相互作用。基于其广泛且呈稳步增长趋势的分布,分析了名义尺寸在0.65纳米至200纳米之间的二氧化硅和银基颗粒对产毒丝状真菌疣孢青霉生理学的影响。结果表明,颗粒的应用浓度和时间点、尺寸和化学成分对生长和霉菌毒素生物合成有强烈影响。在微观尺度上可以看出,银纳米颗粒附着在菌丝体表面。此外,尺寸为0.65纳米和5纳米的银纳米颗粒被证明可内化进入细胞,在细胞质中形成团聚体并与细胞器结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9394/4790900/fa8932bd4dee/pone.0150855.g001.jpg

相似文献

1
Influence of Different Nanomaterials on Growth and Mycotoxin Production of Penicillium verrucosum.
PLoS One. 2016 Mar 14;11(3):e0150855. doi: 10.1371/journal.pone.0150855. eCollection 2016.
3
The possible mechanism of the formation of silver nanoparticles by Penicillium cyclopium.
Bioorg Chem. 2019 Dec;93:102803. doi: 10.1016/j.bioorg.2019.02.028. Epub 2019 Feb 22.
4
Penicillium viridicatum, Penicillium verrucosum, and production of ochratoxin A.
Appl Environ Microbiol. 1987 Feb;53(2):266-9. doi: 10.1128/aem.53.2.266-269.1987.
5
Effects of selected natural preservatives on the mycelial growth and ochratoxin A production of the food-related moulds and .
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2019 Sep;36(9):1411-1418. doi: 10.1080/19440049.2019.1640397. Epub 2019 Jul 11.
6
Intraspecific variability of HOG1 phosphorylation in Penicillium verrucosum reflects different adaptation levels to salt rich habitats.
Int J Food Microbiol. 2013 Aug 1;165(3):246-50. doi: 10.1016/j.ijfoodmicro.2013.05.011. Epub 2013 May 21.
8
Arginine acts as an inhibitor of the biosynthesis of several mycotoxins.
Int J Food Microbiol. 2016 Oct 17;235:46-52. doi: 10.1016/j.ijfoodmicro.2016.06.036. Epub 2016 Jun 29.
9
Trichoderma harzianum: Inhibition of mycotoxin producing fungi and toxin biosynthesis.
Int J Food Microbiol. 2018 Sep 2;280:10-16. doi: 10.1016/j.ijfoodmicro.2018.04.021. Epub 2018 Apr 19.
10
Efficient continuous biosynthesis of silver nanoparticles by activated sludge micromycetes with enhanced tolerance to metal ion toxicity.
Enzyme Microb Technol. 2016 Dec;95:137-145. doi: 10.1016/j.enzmictec.2016.10.008. Epub 2016 Oct 15.

引用本文的文献

3
Biosynthesis of gold nanoparticles by Penicillium rubens and catalytic detoxification of ochratoxin A and organic dye pollutants.
Int Microbiol. 2023 Nov;26(4):765-780. doi: 10.1007/s10123-023-00341-5. Epub 2023 Feb 28.
4
Nanomaterials in food industry for the protection from mycotoxins: an update.
3 Biotech. 2023 Feb;13(2):64. doi: 10.1007/s13205-023-03478-2. Epub 2023 Jan 27.
5
Antifungal mechanisms of silver nanoparticles on mycotoxin producing rice false smut fungus.
iScience. 2022 Dec 8;26(1):105763. doi: 10.1016/j.isci.2022.105763. eCollection 2023 Jan 20.
6
Leachability and Anti-Mold Efficiency of Nanosilver on Poplar Wood Surface.
Polymers (Basel). 2022 Feb 23;14(5):884. doi: 10.3390/polym14050884.
7
Minimizing Ochratoxin A Contamination through the Use of Actinobacteria and Their Active Molecules.
Toxins (Basel). 2020 May 5;12(5):296. doi: 10.3390/toxins12050296.
8
Original Research Article (Experimental): Targeting fungal menace through copper nanoparticles and Tamrajal.
J Ayurveda Integr Med. 2020 Jul-Sep;11(3):316-321. doi: 10.1016/j.jaim.2018.02.134. Epub 2018 Dec 26.
9
Nanoparticles as a Solution for Eliminating the Risk of Mycotoxins.
Nanomaterials (Basel). 2018 Sep 14;8(9):727. doi: 10.3390/nano8090727.
10
Antifungal Effects of Silver Phytonanoparticles from Against Strawberry Soil-Borne Pathogens: and .
Mycobiology. 2018 Mar 29;46(1):47-51. doi: 10.1080/12298093.2018.1454011. eCollection 2018.

本文引用的文献

1
Physical Principles of Nanoparticle Cellular Endocytosis.
ACS Nano. 2015 Sep 22;9(9):8655-71. doi: 10.1021/acsnano.5b03184. Epub 2015 Aug 21.
2
3
Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin.
Int J Food Microbiol. 2015 Jan 2;192:1-6. doi: 10.1016/j.ijfoodmicro.2014.09.008. Epub 2014 Sep 18.
4
Efficient nanoparticle-mediated needle-free transcutaneous vaccination via hair follicles requires adjuvantation.
Nanomedicine. 2015 Jan;11(1):147-54. doi: 10.1016/j.nano.2014.08.009. Epub 2014 Sep 6.
7
The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth.
Environ Sci Technol. 2013 Aug 20;47(16):9496-504. doi: 10.1021/es402109n. Epub 2013 Aug 2.
8
Titanium dioxide nanoparticles increase sensitivity in the next generation of the water flea Daphnia magna.
PLoS One. 2012;7(11):e48956. doi: 10.1371/journal.pone.0048956. Epub 2012 Nov 7.
9
Application of silver nanoparticles for the control of colletotrichum species in vitro and pepper anthracnose disease in field.
Mycobiology. 2011 Sep;39(3):194-9. doi: 10.5941/MYCO.2011.39.3.194. Epub 2011 Sep 27.
10
The biosynthesis of ochratoxin A by Penicillium as one mechanism for adaptation to NaCl rich foods.
Food Microbiol. 2012 Apr;29(2):233-41. doi: 10.1016/j.fm.2011.08.003. Epub 2011 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验