Suppr超能文献

一种基于新字典构建的多模态医学图像融合框架。

A New Dictionary Construction Based Multimodal Medical Image Fusion Framework.

作者信息

Zhou Fuqiang, Li Xiaosong, Zhou Mingxuan, Chen Yuanze, Tan Haishu

机构信息

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China.

School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China.

出版信息

Entropy (Basel). 2019 Mar 9;21(3):267. doi: 10.3390/e21030267.

Abstract

Training a good dictionary is the key to a successful image fusion method of sparse representation based models. In this paper, we propose a novel dictionary learning scheme for medical image fusion. First, we reinforce the weak information of images by extracting and adding their multi-layer details to generate the informative patches. Meanwhile, we introduce a simple and effective multi-scale sampling to implement a multi-scale representation of patches while reducing the computational cost. Second, we design a neighborhood energy metric and a multi-scale spatial frequency metric for clustering the image patches with a similar brightness and detail information into each respective patch group. Then, we train the energy sub-dictionary and detail sub-dictionary, respectively by K-SVD. Finally, we combine the sub-dictionaries to construct a final, complete, compact and informative dictionary. As a main contribution, the proposed online dictionary learning can not only obtain an informative as well as compact dictionary, but can also address the defects, such as superfluous patch issues and low computation efficiency, in traditional dictionary learning algorithms. The experimental results show that our algorithm is superior to some state-of-the-art dictionary learning based techniques in both subjective visual effects and objective evaluation criteria.

摘要

训练一个良好的字典是基于稀疏表示模型的成功图像融合方法的关键。在本文中,我们提出了一种用于医学图像融合的新颖字典学习方案。首先,我们通过提取并添加图像的多层细节来增强其弱信息,以生成信息丰富的补丁。同时,我们引入一种简单有效的多尺度采样方法,在降低计算成本的同时实现补丁的多尺度表示。其次,我们设计了一种邻域能量度量和一种多尺度空间频率度量,用于将具有相似亮度和细节信息的图像补丁聚类到各自的补丁组中。然后,我们分别通过K-SVD训练能量子字典和细节子字典。最后,我们将子字典组合起来构建一个最终的、完整的、紧凑且信息丰富的字典。作为主要贡献,所提出的在线字典学习不仅可以获得一个信息丰富且紧凑的字典,还可以解决传统字典学习算法中的缺陷,如多余补丁问题和低计算效率等。实验结果表明,我们的算法在主观视觉效果和客观评估标准方面均优于一些基于字典学习的先进技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55b6/7514747/dca9ff616761/entropy-21-00267-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验