Suppr超能文献

一组扩展的基于酵母的功能测定法能准确识别人类疾病突变。

An extended set of yeast-based functional assays accurately identifies human disease mutations.

作者信息

Sun Song, Yang Fan, Tan Guihong, Costanzo Michael, Oughtred Rose, Hirschman Jodi, Theesfeld Chandra L, Bansal Pritpal, Sahni Nidhi, Yi Song, Yu Analyn, Tyagi Tanya, Tie Cathy, Hill David E, Vidal Marc, Andrews Brenda J, Boone Charles, Dolinski Kara, Roth Frederick P

机构信息

Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden;

Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada;

出版信息

Genome Res. 2016 May;26(5):670-80. doi: 10.1101/gr.192526.115. Epub 2016 Mar 14.

Abstract

We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods.

摘要

我们现在能够常规地识别个体人类基因组中的编码变异。一个紧迫的挑战是确定哪些变异会破坏疾病相关基因的功能。目前存在实验和计算方法来预测人类遗传变异的致病性。然而,它们之间缺乏系统的性能比较。因此,我们开发并利用了一组基于酵母的26种功能互补试验,来测量来自22个人类疾病基因的179个变异(101个疾病相关变异和78个非疾病相关变异)的影响。利用所得的参考标准,我们表明,在一种分化了10亿年的模式生物中进行的实验性功能试验,能够比当前的计算方法以显著更高的精度和特异性识别致病等位基因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验