Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
Sci Adv. 2024 May 17;10(20):eadj9382. doi: 10.1126/sciadv.adj9382. Epub 2024 May 15.
Performing saturation editing of chromosomal genes will enable the study of genetic variants in situ and facilitate protein and cell engineering. However, current in vivo editing of endogenous genes either lacks flexibility or is limited to discrete codons and short gene fragments, preventing a comprehensive exploration of genotype-phenotype relationships. To enable facile saturation editing of full-length genes, we used a protospacer adjacent motif-relaxed Cas9 variant and homology-directed repair to achieve above 60% user-defined codon replacement efficiencies in genome. Coupled with massively parallel DNA design and synthesis, we developed a saturation gene editing method termed CRISPR-Cas9- and homology-directed repair-assisted saturation editing (CHASE) and achieved highly saturated codon swapping of long genomic regions. By applying CHASE to massively edit a well-studied global transcription factor gene, we found known and unreported genetic variants affecting an industrially relevant microbial trait. The user-defined codon editing capability and wide targeting windows of CHASE substantially expand the scope of saturation gene editing.
进行染色体基因的饱和编辑将能够在原位研究遗传变异,并促进蛋白质和细胞工程。然而,目前对内源性基因的体内编辑要么缺乏灵活性,要么仅限于离散的密码子和短基因片段,从而无法全面探索基因型-表型关系。为了能够轻松地对全长基因进行饱和编辑,我们使用了一个间隔区相邻基序松弛的 Cas9 变体和同源定向修复,在基因组中实现了超过 60%的用户定义密码子替换效率。我们将其与大规模并行 DNA 设计和合成相结合,开发了一种称为 CRISPR-Cas9 和同源定向修复辅助饱和编辑(CHASE)的饱和基因编辑方法,并实现了长基因组区域的高度饱和密码子替换。通过将 CHASE 应用于大规模编辑一个研究充分的全局转录因子基因,我们发现了已知和未报告的影响工业相关微生物特性的遗传变异。CHASE 的用户定义密码子编辑能力和广泛的靶向窗口大大扩展了饱和基因编辑的范围。