Kumar Sudhir, Deshpande Deepak D, Nahum Alan E
Department of Physics, Clatterbridge Cancer Centre, Bebington, CH63 4JY, UK. Department of Physics, University of Liverpool, Liverpool L69 7ZE, UK. Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CT & CRS building, Anushaktinagar, Mumbai-400094, India. Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai-400 094, India.
Phys Med Biol. 2016 Apr 7;61(7):2680-704. doi: 10.1088/0031-9155/61/7/2680. Epub 2016 Mar 15.
Cavity theory is fundamental to understanding and predicting dosimeter response. Conventional cavity theories have been shown to be consistent with one another by deriving the electron (+positron) and photon fluence spectra with the FLURZnrc user-code (EGSnrc Monte-Carlo system) in large volumes under quasi-CPE for photon beams of 1 MeV and 10 MeV in three materials (water, aluminium and copper) and then using these fluence spectra to evaluate and then inter-compare the Bragg-Gray, Spencer-Attix and 'large photon' 'cavity integrals'. The behaviour of the 'Spencer-Attix dose' (aka restricted cema), D S-A(▵), in a 1-MeV photon field in water has been investigated for a wide range of values of the cavity-size parameter ▵: D S-A(▵) decreases far below the Monte-Carlo dose (D MC) for ▵ greater than ≈ 30 keV due to secondary electrons with starting energies below ▵ not being 'counted'. We show that for a quasi-scatter-free geometry (D S-A(▵)/D MC) is closely equal to the proportion of energy transferred to Compton electrons with initial (kinetic) energies above ▵, derived from the Klein-Nishina (K-N) differential cross section. (D S-A(▵)/D MC) can be used to estimate the maximum size of a detector behaving as a Bragg-Gray cavity in a photon-irradiated medium as a function of photon-beam quality (under quasi CPE) e.g. a typical air-filled ion chamber is 'Bragg-Gray' at (monoenergetic) beam energies ⩾260 keV. Finally, by varying the density of a silicon cavity (of 2.26 mm diameter and 2.0 mm thickness) in water, the response of different cavity 'sizes' was simulated; the Monte-Carlo-derived ratio D w/D Si for 6 MV and 15 MV photons varied from very close to the Spencer-Attix value at 'gas' densities, agreed well with Burlin cavity theory as ρ increased, and approached large photon behaviour for ρ ≈ 10 g cm(-3). The estimate of ▵ for the Si cavity was improved by incorporating a Monte-Carlo-derived correction for electron 'detours'. Excellent agreement was obtained between the Burlin 'd' factor for the Si cavity and D S-A(▵)/D MC at different (detour-corrected) ▵, thereby suggesting a further application for the D S-A(▵)/D MC ratio.
空腔理论是理解和预测剂量计响应的基础。传统的空腔理论已被证明相互一致,方法是在准平衡电子对效应(CPE)条件下,使用FLURZnrc用户代码(EGSnrc蒙特卡罗系统)在三种材料(水、铝和铜)的大体积中推导1 MeV和10 MeV光子束的电子(+正电子)和光子注量谱,然后使用这些注量谱来评估并相互比较布拉格 - 格雷、斯宾塞 - 阿蒂克斯和“大光子”“空腔积分”。对于空腔尺寸参数▽的广泛取值范围,研究了水中1 MeV光子场中“斯宾塞 - 阿蒂克斯剂量”(即受限比释动能)DS - A(▽)的行为:当▽大于约30 keV时,由于起始能量低于▽的二次电子未被“计入”,DS - A(▽)远低于蒙特卡罗剂量(DMC)。我们表明,对于准无散射几何结构,(DS - A(▽)/DMC) 紧密等于从克莱因 - Nishina(K - N)微分截面导出的、转移到初始(动能)能量高于▽的康普顿电子的能量比例。(DS - A(▽)/DMC) 可用于估计在光子辐照介质中表现为布拉格 - 格雷空腔的探测器的最大尺寸,作为光子束质量的函数(在准CPE条件下),例如典型的充气电离室在(单能)束能量⩾260 keV时是“布拉格 - 格雷”的。最后,通过改变水中直径为2.26 mm、厚度为2.0 mm的硅空腔的密度,模拟了不同空腔“尺寸”的响应;对于6 MV和15 MV光子,蒙特卡罗推导的Dw/Dsi比值在“气体”密度时非常接近斯宾塞 - 阿蒂克斯值,随着ρ增加与伯林空腔理论吻合良好,并在ρ≈10 g cm⁻³时接近大光子行为。通过纳入蒙特卡罗推导的电子“迂回”校正,改进了硅空腔▽的估计。在不同的(迂回校正)▽下,硅空腔的伯林“d”因子与DS - A(▽)/DMC之间取得了极好的一致性,从而表明DS - A(▽)/DMC比值有进一步的应用。