Molitor Christian, Mauracher Stephan Gerhard, Rompel Annette
Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, 1090 Vienna, Austria.
Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, 1090 Vienna, Austria
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1806-15. doi: 10.1073/pnas.1523575113. Epub 2016 Mar 14.
Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo.
酪氨酸酶和儿茶酚氧化酶属于多酚氧化酶(PPO)家族。酪氨酸酶催化酚类化合物的邻羟基化和氧化反应,而到目前为止,儿茶酚氧化酶被定义为缺乏羟基化活性,仅催化邻二酚类化合物的氧化反应。大花金鸡菊中的橙酮合酶(AUS1)是一种参与橙酮合成途径的特殊植物PPO。据我们所知,我们首次展示了一种潜在植物PPO的晶体结构,以及由铜结合组氨酸硫酸化导致的其成熟活性和非活性形式。对潜在酶原屏蔽C末端结构域与主要核心之间界面的分析,为其激活机制提供了见解。由于AUS1不接受常见的酪氨酸酶底物(酪氨酸和酪胺),该酶被归类为儿茶酚氧化酶。然而,AUS1对其天然底物(异甘草素)表现出羟化酶活性,这表明羟化酶活性与对常见酪氨酸酶底物的接受情况无关。因此,我们提出羟化酶反应是PPO的一种普遍功能。我们进行了对接底物 - 酶复合物的分子动力学模拟,并确定了一个影响植物PPO对酪胺接受或排斥的关键残基。基于分子动力学模拟过程中证明的羟化酶活性以及特定残基与底物的相互作用,我们提出了一种新的植物PPO催化反应机制。所呈现的结果强烈表明,植物儿茶酚氧化酶的生理作用此前被低估了,因为它们可能在体内使其迄今未知的天然底物发生羟基化。