Gago Jorge, Daloso Danilo de Menezes, Figueroa Carlos María, Flexas Jaume, Fernie Alisdair Robert, Nikoloski Zoran
Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain (J.G., J.F.); Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany (J.G., D.d.M.D., A.R.F.); System Regulation Group, Metabolic Networks Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany (C.M.F.); andSystems Biology and Mathematical Modeling Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany (Z.N.)
Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Illes Balears, Spain (J.G., J.F.); Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany (J.G., D.d.M.D., A.R.F.); System Regulation Group, Metabolic Networks Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany (C.M.F.); andSystems Biology and Mathematical Modeling Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany (Z.N.).
Plant Physiol. 2016 May;171(1):265-79. doi: 10.1104/pp.15.01660. Epub 2016 Mar 14.
Plant metabolism drives plant development and plant-environment responses, and data readouts from this cellular level could provide insights in the underlying molecular processes. Existing studies have already related key in vivo leaf gas-exchange parameters with structural traits and nutrient components across multiple species. However, insights in the relationships of leaf gas-exchange with leaf primary metabolism are still limited. We investigated these relationships through a multispecies meta-analysis approach based on data sets from 17 published studies describing net photosynthesis (A) and stomatal (gs) and mesophyll (gm) conductances, alongside the 53 data profiles from primary metabolism of 14 species grown in different experiments. Modeling results highlighted the conserved patterns between the different species. Consideration of species-specific effects increased the explanatory power of the models for some metabolites, including Glc-6-P, Fru-6-P, malate, fumarate, Xyl, and ribose. Significant relationships of A with sugars and phosphorylated intermediates were observed. While gs was related to sugars, organic acids, myo-inositol, and shikimate, gm showed a more complex pattern in comparison to the two other traits. Some metabolites, such as malate and Man, appeared in the models for both conductances, suggesting a metabolic coregulation between gs and gm The resulting statistical models provide the first hints for coregulation patterns involving primary metabolism plus leaf water and carbon balances that are conserved across plant species, as well as species-specific trends that can be used to determine new biotechnological targets for crop improvement.
植物代谢驱动植物发育以及植物与环境的相互作用,而从细胞水平获取的数据读数能够为潜在的分子过程提供见解。现有研究已将多个物种体内关键的叶片气体交换参数与结构特征及营养成分联系起来。然而,关于叶片气体交换与叶片初级代谢之间关系的见解仍然有限。我们通过多物种荟萃分析方法进行了研究,该方法基于17项已发表研究的数据集,这些数据集描述了净光合作用(A)、气孔导度(gs)和叶肉导度(gm),同时还有来自14个物种在不同实验中生长的初级代谢的53个数据概况。建模结果突出了不同物种之间的保守模式。考虑物种特异性效应提高了模型对某些代谢物的解释力,这些代谢物包括葡萄糖-6-磷酸、果糖-6-磷酸、苹果酸、富马酸、木糖和核糖。观察到A与糖类和磷酸化中间体之间存在显著关系。虽然gs与糖类、有机酸、肌醇和莽草酸有关,但与其他两个特征相比,gm表现出更复杂的模式。一些代谢物,如苹果酸和甘露糖,出现在两种导度的模型中,这表明gs和gm之间存在代谢共调节。所得的统计模型首次为涉及初级代谢以及叶片水分和碳平衡的共调节模式提供了线索,这些模式在植物物种中是保守的,同时也提供了物种特异性趋势,可用于确定作物改良的新生物技术目标。