Suppr超能文献

当生物医学研究中的数据因检测限而缺失时,简单插补对总体均值推断的影响。

The effect of simple imputation on inferences about population means when data are missing in biomedical research due to detection limits.

作者信息

Wang Hongyue, Chen Guanqing, Lu Xiang, Zhang Hui, Feng Changyong

机构信息

Departments of Biostatistics and Computational Biology, University of Rochester, Rochester, NY.

Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN.

出版信息

Shanghai Arch Psychiatry. 2015 Oct;27(5):319-25. doi: 10.11919/j.issn.1002-0829.215121.

Abstract

The sample geometric mean has been widely used in biomedical and psychosocial research to estimate and compare population geometric means. However, due to the detection limit of measurement instruments, the actual value of the measurement is not always observable. A common practice to deal with this problem is to replace missing values by small positive constants and make inferences based on the imputed data. However, no work has been carried out to study the effect of this naïve imputation method on inference. In this report, we show that this simple imputation method may dramatically change the reported outcomes of a study and, thus, make the results uninterpretable, even if the detection limit is very small.

摘要

样本几何平均数已广泛应用于生物医学和心理社会研究中,以估计和比较总体几何平均数。然而,由于测量仪器的检测限,测量的实际值并非总是可观测到的。处理这个问题的一个常见做法是用小的正常数替换缺失值,并基于插补后的数据进行推断。然而,尚未开展任何工作来研究这种简单插补方法对推断的影响。在本报告中,我们表明,即使检测限非常小,这种简单的插补方法也可能显著改变研究报告的结果,从而使结果无法解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d34/4764008/35b08bb4716f/sap-27-05-319-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验