Levine Mia T, Vander Wende Helen M, Hsieh Emily, Baker EmilyClare P, Malik Harmit S
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA.
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle,
Mol Biol Evol. 2016 Jul;33(7):1641-53. doi: 10.1093/molbev/msw053. Epub 2016 Mar 14.
Transposable elements (TEs) comprise large fractions of many eukaryotic genomes and imperil host genome integrity. The host genome combats these challenges by encoding proteins that silence TE activity. Both the introduction of new TEs via horizontal transfer and TE sequence evolution requires constant innovation of host-encoded TE silencing machinery to keep pace with TEs. One form of host innovation is the adaptation of existing, single-copy host genes. Indeed, host suppressors of TE replication often harbor signatures of positive selection. Such signatures are especially evident in genes encoding the piwi-interacting-RNA pathway of gene silencing, for example, the female germline-restricted TE silencer, HP1D/Rhino Host genomes can also innovate via gene duplication and divergence. However, the importance of gene family expansions, contractions, and gene turnover to host genome defense has been largely unexplored. Here, we functionally characterize Oxpecker, a young, tandem duplicate gene of HP1D/rhino We demonstrate that Oxpecker supports female fertility in Drosophila melanogaster and silences several TE families that are incompletely silenced by HP1D/Rhino in the female germline. We further show that, like Oxpecker, at least ten additional, structurally diverse, HP1D/rhino-derived daughter and "granddaughter" genes emerged during a short 15-million year period of Drosophila evolution. These young paralogs are transcribed primarily in germline tissues, where the genetic conflict between host genomes and TEs plays out. Our findings suggest that gene family expansion is an underappreciated yet potent evolutionary mechanism of genome defense diversification.
转座元件(TEs)在许多真核生物基因组中占很大比例,并危及宿主基因组的完整性。宿主基因组通过编码使TE活性沉默的蛋白质来应对这些挑战。通过水平转移引入新的TEs和TE序列进化都需要宿主编码的TE沉默机制不断创新,以跟上TEs的变化。宿主创新的一种形式是对现有的单拷贝宿主基因进行适应性改造。事实上,TE复制的宿主抑制因子往往带有正选择的特征。这种特征在编码基因沉默的piwi相互作用RNA途径的基因中尤为明显,例如雌性生殖系特异性的TE沉默因子HP1D/犀牛蛋白。宿主基因组也可以通过基因复制和分化进行创新。然而,基因家族的扩张、收缩和基因更替对宿主基因组防御的重要性在很大程度上尚未得到探索。在这里,我们对Oxpecker进行了功能表征,它是HP1D/犀牛蛋白的一个年轻的串联重复基因。我们证明,Oxpecker支持黑腹果蝇的雌性生育能力,并沉默了几个在雌性生殖系中未被HP1D/犀牛蛋白完全沉默的TE家族。我们进一步表明,与Oxpecker一样,在果蝇进化的短短1500万年中,至少还有另外十个结构多样的、源自HP1D/犀牛蛋白的子代和“孙代”基因出现。这些年轻的旁系同源基因主要在生殖系组织中表达,宿主基因组和TEs之间的遗传冲突在那里发生。我们的研究结果表明,基因家族扩张是一种未被充分认识但强大的基因组防御多样化进化机制。