Yi Longqing, Pukhov Alexander, Shen Baifei
Institut fuer Theoretische Physik I, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, 40225 Germany.
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800, China.
Sci Rep. 2016 Jun 20;6:28147. doi: 10.1038/srep28147.
Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.
高对比度激光器以及先进微纳结构制造技术的最新进展极大地推动了相对论强度下激光与微纳工程靶标的等离子体相互作用。这为激光与物质相互作用的物理学开辟了新的可能性。在此,我们提出一种新颖的方法,该方法利用高压二氧化碳激光器、激光 - 波导相互作用以及微纳工程等离子体结构的优势,将电子加速至峰值能量大于1 GeV,且切片能量 spread窄(约1%)、整体效率高。对于1.3 TW的二氧化碳激光系统,加速梯度为26 GV/m。长电子束的微聚束导致产生一系列超短电子束,其持续时间大致等于半激光周期。这些结果为开发用于各种应用的紧凑且经济的电子源开辟了道路。