Suppr超能文献

大型马赛病毒通过形成巨大感染性囊泡探索不同的进入途径。

The Large Marseillevirus Explores Different Entry Pathways by Forming Giant Infectious Vesicles.

作者信息

Arantes Thalita Souza, Rodrigues Rodrigo Araújo Lima, Dos Santos Silva Ludmila Karen, Oliveira Graziele Pereira, de Souza Helton Luís, Khalil Jacques Y B, de Oliveira Danilo Bretas, Torres Alice Abreu, da Silva Luis Lamberti, Colson Philippe, Kroon Erna Geessien, da Fonseca Flávio Guimarães, Bonjardim Cláudio Antônio, La Scola Bernard, Abrahão Jônatas Santos

机构信息

Department of Microbiology, Institute of Biological Sciences, Unviversidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

URMITE CNRS UMR 6236-IRD 3R198, Aix Marseille Universite, Marseille, France.

出版信息

J Virol. 2016 May 12;90(11):5246-55. doi: 10.1128/JVI.00177-16. Print 2016 Jun 1.

Abstract

UNLABELLED

Triggering the amoebal phagocytosis process is a sine qua non condition for most giant viruses to initiate their replication cycle and consequently to promote their progeny formation. It is well known that the amoebal phagocytosis process requires the recognition of particles of >500 nm, and most amoebal giant viruses meet this requirement, such as mimivirus, pandoravirus, pithovirus, and mollivirus. However, in the context of the discovery of amoebal giant viruses in the last decade, Marseillevirus marseillevirus (MsV) has drawn our attention, because despite its ability to successfully replicate in Acanthamoeba, remarkably it does not fulfill the >500-nm condition, since it presents an ∼250-nm icosahedrally shaped capsid. We deeply investigated the MsV cycle by using a set of methods, including virological, molecular, and microscopic (immunofluorescence, scanning electron microscopy, and transmission electron microscopy) assays. Our results revealed that MsV is able to form giant vesicles containing dozens to thousands of viral particles wrapped by membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggested that these giant vesicles are able to stimulate amoebal phagocytosis and to trigger the MsV replication cycle by an acidification-independent process. Also, we observed that MsV entry may occur by the phagocytosis of grouped particles (without surrounding membranes) and by an endosome-stimulated pathway triggered by single particles. Taken together, not only do our data deeply describe the main features of MsV replication cycle, but this is the first time, to our knowledge, that the formation of giant infective vesicles related to a DNA virus has been described.

IMPORTANCE

Triggering the amoebal phagocytosis process is a sine qua non condition required by most giant viruses to initiate their replication cycle. This process requires the recognition of particles of >500 nm, and many giant viruses meet this requirement. However, MsV is unusual, as despite having particles of ∼250 nm it is able to replicate in Acanthamoeba Our results revealed that MsV is able to form giant vesicles, containing dozens to thousands of viral particles, wrapped in membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggest that these giant vesicles are able to stimulate phagocytosis using an acidification-independent process. Our work not only describes the main features of the MsV replication cycle but also describes, for the first time to our knowledge, the formation of huge infective vesicles in a large DNA viruses.

摘要

未标记

触发变形虫吞噬过程是大多数巨型病毒启动其复制周期并进而促进其子代形成的必要条件。众所周知,变形虫吞噬过程需要识别直径大于500纳米的颗粒,大多数变形虫巨型病毒满足这一要求,如米米病毒、潘多拉病毒、髓病毒和 Mollivirus 病毒。然而,在过去十年发现变形虫巨型病毒的背景下,马赛病毒(MsV)引起了我们的关注,因为尽管它能够在棘阿米巴中成功复制,但值得注意的是它不满足直径大于500纳米的条件,因为它呈现出约250纳米的二十面体形状的衣壳。我们使用了一系列方法深入研究了MsV的循环,包括病毒学、分子和显微镜(免疫荧光、扫描电子显微镜和透射电子显微镜)检测。我们的结果表明,MsV能够形成巨大的囊泡,其中包含数十到数千个被源自变形虫内质网的膜包裹的病毒颗粒。值得注意的是,我们的结果强烈表明,这些巨大的囊泡能够通过一个不依赖酸化的过程刺激变形虫吞噬并触发MsV复制周期。此外,我们观察到MsV的进入可能通过聚集颗粒(无周围膜)的吞噬以及单个颗粒触发的内体刺激途径发生。总之,我们的数据不仅深入描述了MsV复制周期的主要特征,而且据我们所知,这是首次描述与DNA病毒相关的巨大感染性囊泡的形成。

重要性

触发变形虫吞噬过程是大多数巨型病毒启动其复制周期所需的必要条件。这个过程需要识别直径大于500纳米的颗粒,许多巨型病毒满足这一要求。然而,MsV很不寻常,尽管其颗粒直径约为250纳米,但它能够在棘阿米巴中复制。我们的结果表明,MsV能够形成巨大的囊泡,其中包含数十到数千个被源自变形虫内质网的膜包裹的病毒颗粒。值得注意的是,我们的结果强烈表明,这些巨大的囊泡能够通过一个不依赖酸化的过程刺激吞噬作用。我们的工作不仅描述了MsV复制周期的主要特征,而且据我们所知,首次描述了大型DNA病毒中巨大感染性囊泡的形成。

相似文献

1
The Large Marseillevirus Explores Different Entry Pathways by Forming Giant Infectious Vesicles.
J Virol. 2016 May 12;90(11):5246-55. doi: 10.1128/JVI.00177-16. Print 2016 Jun 1.
2
Complex Membrane Remodeling during Virion Assembly of the 30,000-Year-Old Mollivirus Sibericum.
J Virol. 2019 Jun 14;93(13). doi: 10.1128/JVI.00388-19. Print 2019 Jul 1.
3
Mimivirus: leading the way in the discovery of giant viruses of amoebae.
Nat Rev Microbiol. 2017 Apr;15(4):243-254. doi: 10.1038/nrmicro.2016.197. Epub 2017 Feb 27.
6
New Isolates of Pandoraviruses: Contribution to the Study of Replication Cycle Steps.
J Virol. 2019 Feb 19;93(5). doi: 10.1128/JVI.01942-18. Print 2019 Mar 1.
7
In-depth analysis of the replication cycle of Orpheovirus.
Virol J. 2019 Dec 16;16(1):158. doi: 10.1186/s12985-019-1268-8.
10
In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5327-35. doi: 10.1073/pnas.1510795112. Epub 2015 Sep 8.

引用本文的文献

4
The final cut: how giant viruses of protists are released from their hosts' cells.
Arch Virol. 2025 Mar 13;170(4):77. doi: 10.1007/s00705-025-06261-1.
5
Protists as mediators of complex microbial and viral associations.
bioRxiv. 2024 Dec 30:2024.12.29.630703. doi: 10.1101/2024.12.29.630703.
6
Giant viruses inhibit superinfection by downregulating phagocytosis in .
J Virol. 2024 Oct 22;98(10):e0104524. doi: 10.1128/jvi.01045-24. Epub 2024 Sep 3.
7
Cytopathic effects in Mimivirus infection: understanding the kinetics of virus-cell interaction.
Mem Inst Oswaldo Cruz. 2024 Jul 22;119:e230186. doi: 10.1590/0074-02760230186. eCollection 2024.
10
The consequences of viral infection on protists.
Commun Biol. 2024 Mar 11;7(1):306. doi: 10.1038/s42003-024-06001-2.

本文引用的文献

1
Isolation of new Brazilian giant viruses from environmental samples using a panel of protozoa.
Front Microbiol. 2015 Oct 6;6:1086. doi: 10.3389/fmicb.2015.01086. eCollection 2015.
2
Intercellular Transmission of Viral Populations with Vesicles.
J Virol. 2015 Dec;89(24):12242-4. doi: 10.1128/JVI.01452-15. Epub 2015 Sep 30.
4
In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5327-35. doi: 10.1073/pnas.1510795112. Epub 2015 Sep 8.
5
Virus-host interactions: insights from the replication cycle of the large Paramecium bursaria chlorella virus.
Cell Microbiol. 2016 Jan;18(1):3-16. doi: 10.1111/cmi.12486. Epub 2015 Aug 27.
6
Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae.
J Virol. 2015 Jul;89(13):6585-94. doi: 10.1128/JVI.00115-15.
8
Complete genome sequence of Tunisvirus, a new member of the proposed family Marseilleviridae.
Arch Virol. 2014 Sep;159(9):2349-58. doi: 10.1007/s00705-014-2023-5. Epub 2014 Apr 26.
9
Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4274-9. doi: 10.1073/pnas.1320670111. Epub 2014 Mar 3.
10
Marseillevirus adenitis in an 11-month-old child.
J Clin Microbiol. 2013 Dec;51(12):4102-5. doi: 10.1128/JCM.01918-13. Epub 2013 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验