Suppr超能文献

信息论在衰老和衰老相关疾病研究中的应用。

The application of information theory for the research of aging and aging-related diseases.

机构信息

C.D. Technologies Ltd., Israel.

Department of Science, Technology and Society, Bar Ilan University, Ramat Gan, Israel.

出版信息

Prog Neurobiol. 2017 Oct;157:158-173. doi: 10.1016/j.pneurobio.2016.03.005. Epub 2016 Mar 19.

Abstract

This article reviews the application of information-theoretical analysis, employing measures of entropy and mutual information, for the study of aging and aging-related diseases. The research of aging and aging-related diseases is particularly suitable for the application of information theory methods, as aging processes and related diseases are multi-parametric, with continuous parameters coexisting alongside discrete parameters, and with the relations between the parameters being as a rule non-linear. Information theory provides unique analytical capabilities for the solution of such problems, with unique advantages over common linear biostatistics. Among the age-related diseases, information theory has been used in the study of neurodegenerative diseases (particularly using EEG time series for diagnosis and prediction), cancer (particularly for establishing individual and combined cancer biomarkers), diabetes (mainly utilizing mutual information to characterize the diseased and aging states), and heart disease (mainly for the analysis of heart rate variability). Few works have employed information theory for the analysis of general aging processes and frailty, as underlying determinants and possible early preclinical diagnostic measures for aging-related diseases. Generally, the use of information-theoretical analysis permits not only establishing the (non-linear) correlations between diagnostic or therapeutic parameters of interest, but may also provide a theoretical insight into the nature of aging and related diseases by establishing the measures of variability, adaptation, regulation or homeostasis, within a system of interest. It may be hoped that the increased use of such measures in research may considerably increase diagnostic and therapeutic capabilities and the fundamental theoretical mathematical understanding of aging and disease.

摘要

本文综述了信息理论分析的应用,采用熵和互信息度量方法,研究衰老和衰老相关疾病。衰老和衰老相关疾病的研究特别适合应用信息论方法,因为衰老过程和相关疾病是多参数的,既有连续参数,也有离散参数,而且参数之间的关系通常是非线性的。信息论为解决这类问题提供了独特的分析能力,与常见的线性生物统计学相比具有独特的优势。在与年龄相关的疾病中,信息论已被用于研究神经退行性疾病(特别是使用 EEG 时间序列进行诊断和预测)、癌症(特别是建立个体和联合癌症生物标志物)、糖尿病(主要利用互信息来描述疾病和衰老状态)和心脏病(主要用于心率变异性分析)。很少有研究将信息论用于一般衰老过程和脆弱性的分析,因为它们是衰老相关疾病的潜在决定因素和可能的早期临床前诊断措施。一般来说,信息理论分析的应用不仅可以建立感兴趣的诊断或治疗参数之间的(非线性)相关性,而且可以通过建立感兴趣系统的变异性、适应性、调节或内稳态的度量,为衰老和相关疾病的本质提供理论见解。希望在研究中更多地使用这些措施,可以显著提高诊断和治疗能力,并对衰老和疾病的基本理论数学理解有很大的帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验