Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
Nature. 2013 May 2;497(7447):142-6. doi: 10.1038/nature12133. Epub 2013 Apr 21.
Arrestins interact with G-protein-coupled receptors (GPCRs) to block interaction with G proteins and initiate G-protein-independent signalling. Arrestins have a bi-lobed structure that is stabilized by a long carboxy-terminal tail (C-tail), and displacement of the C-tail by receptor-attached phosphates activates arrestins for binding active GPCRs. Structures of the inactive state of arrestin are available, but it is not known how C-tail displacement activates arrestin for receptor coupling. Here we present a 3.0 Å crystal structure of the bovine arrestin-1 splice variant p44, in which the activation step is mimicked by C-tail truncation. The structure of this pre-activated arrestin is profoundly different from the basal state and gives insight into the activation mechanism. p44 displays breakage of the central polar core and other interlobe hydrogen-bond networks, leading to a ∼21° rotation of the two lobes as compared to basal arrestin-1. Rearrangements in key receptor-binding loops in the central crest region include the finger loop, loop 139 (refs 8, 10, 11) and the sequence Asp 296-Asn 305 (or gate loop), here identified as controlling the polar core. We verified the role of these conformational alterations in arrestin activation and receptor binding by site-directed fluorescence spectroscopy. The data indicate a mechanism for arrestin activation in which C-tail displacement releases critical central-crest loops from restricted to extended receptor-interacting conformations. In parallel, increased flexibility between the two lobes facilitates a proper fitting of arrestin to the active receptor surface. Our results provide a snapshot of an arrestin ready to bind the active receptor, and give an insight into the role of naturally occurring truncated arrestins in the visual system.
阻滞蛋白与 G 蛋白偶联受体 (GPCR) 相互作用,阻断与 G 蛋白的相互作用,并启动 G 蛋白非依赖性信号转导。阻滞蛋白具有双叶结构,其由长的羧基末端尾巴 (C 尾巴) 稳定,受体附着的磷酸酯置换 C 尾巴可激活阻滞蛋白与活性 GPCR 结合。已有阻滞蛋白非活性状态的结构,但尚不清楚 C 尾巴置换如何激活阻滞蛋白与受体偶联。在这里,我们呈现了牛阻滞蛋白-1 剪接变体 p44 的 3.0Å 晶体结构,其中通过 C 尾巴截断模拟了激活步骤。该预激活阻滞蛋白的结构与基础状态有很大不同,为激活机制提供了深入了解。p44 显示中央极性核心和其他叶间氢键网络的断裂,导致与基础状态的阻滞蛋白-1 相比,两个叶之间发生约 21°的旋转。中央嵴区域中关键的受体结合环的重排包括指环、环 139(参考文献 8、10、11)和序列 Asp296-Asn305(或门环),这里确定为控制极性核心。我们通过定点荧光光谱法验证了这些构象改变在阻滞蛋白激活和受体结合中的作用。数据表明,阻滞蛋白激活的机制是 C 尾巴位移将关键的中央嵴环从受限的受体相互作用构象释放到扩展的构象。同时,两个叶之间的柔韧性增加促进了阻滞蛋白与活性受体表面的适当结合。我们的结果提供了一个准备与活性受体结合的阻滞蛋白的快照,并深入了解了天然存在的截断阻滞蛋白在视觉系统中的作用。