Suppr超能文献

数量性状与孟德尔性状之间的拮抗协同进化

Antagonistic coevolution between quantitative and Mendelian traits.

作者信息

Yamamichi Masato, Ellner Stephen P

机构信息

Hakubi Center for Advanced Research, Kyoto University, Sakyo, Kyoto 606-8501, Japan Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.

出版信息

Proc Biol Sci. 2016 Mar 30;283(1827):20152926. doi: 10.1098/rspb.2015.2926.

Abstract

Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator-prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species.

摘要

协同进化不断地创造并维持生物多样性,因此一直是进化生物学的核心主题。以往的理论研究大多考虑基因对称性状之间的协同进化(即两个连续数量性状或两个离散孟德尔性状之间的协同进化)。然而,最近的实证证据表明,协同进化也可能发生在基因不对称性状之间(例如数量性状和孟德尔性状之间)。我们研究了由一个数量型捕食者性状和一个孟德尔型猎物性状介导的拮抗协同进化的后果,即性状之间的表型距离越小,捕食就越强烈(表型匹配)。这种拮抗协同进化在性状协同进化的二维模型中产生了具有双稳态(初始状态依赖性)的复杂分岔模式。此外,考虑到生态进化动力学(即性状进化影响捕食者 - 猎物种群动态),我们发现协同进化会导致丰富的动态变化,包括反相周期、同相周期、混沌动态和确定性的捕食者灭绝。当猎物性状表现出完全显性而非半显性,且捕食者性状进化非常迅速时,捕食者灭绝更有可能发生。我们的研究表明,认识到相互作用的生态性状的遗传结构对于理解协同进化物种的种群和进化动态至关重要。

相似文献

1
Antagonistic coevolution between quantitative and Mendelian traits.
Proc Biol Sci. 2016 Mar 30;283(1827):20152926. doi: 10.1098/rspb.2015.2926.
2
Network Structure and Selection Asymmetry Drive Coevolution in Species-Rich Antagonistic Interactions.
Am Nat. 2017 Jul;190(1):99-115. doi: 10.1086/692110. Epub 2017 May 19.
5
Chaotic Red Queen coevolution in three-species food chains.
Proc Biol Sci. 2010 Aug 7;277(1692):2321-30. doi: 10.1098/rspb.2010.0209. Epub 2010 Mar 31.
6
Predator-prey coevolution driven by size selective predation can cause anti-synchronized and cryptic population dynamics.
Theor Popul Biol. 2012 Mar;81(2):113-8. doi: 10.1016/j.tpb.2011.12.005. Epub 2011 Dec 22.
7
Ecological and evolutionary consequences of predator-prey role reversal: Allee effect and catastrophic predator extinction.
J Theor Biol. 2021 Feb 7;510:110542. doi: 10.1016/j.jtbi.2020.110542. Epub 2020 Nov 23.
8
Coevolution of phenotypic plasticity in predator and prey: why are inducible offenses rarer than inducible defenses?
Evolution. 2011 Apr;65(4):1079-87. doi: 10.1111/j.1558-5646.2010.01187.x. Epub 2010 Nov 30.
9
Pick your trade-offs wisely: Predator-prey eco-evo dynamics are qualitatively different under different trade-offs.
J Theor Biol. 2018 Nov 7;456:201-212. doi: 10.1016/j.jtbi.2018.08.013. Epub 2018 Aug 9.
10
Predator coevolution and prey trait variability determine species coexistence.
Proc Biol Sci. 2019 May 15;286(1902):20190245. doi: 10.1098/rspb.2019.0245.

引用本文的文献

1
How does genetic architecture affect eco-evolutionary dynamics? A theoretical perspective.
Philos Trans R Soc Lond B Biol Sci. 2022 Jul 18;377(1855):20200504. doi: 10.1098/rstb.2020.0504. Epub 2022 May 30.
2
Coevolutionary theory of hosts and parasites.
J Evol Biol. 2022 Feb;35(2):205-224. doi: 10.1111/jeb.13981. Epub 2022 Jan 30.

本文引用的文献

1
ORGANIZATION OF PREDATOR-PREY COMMUNITIES AS AN EVOLUTIONARY GAME.
Evolution. 1992 Oct;46(5):1269-1283. doi: 10.1111/j.1558-5646.1992.tb01123.x.
2
QUANTITATIVE GENETICS AND POPULATION DYNAMICS.
Evolution. 1996 Apr;50(2):532-546. doi: 10.1111/j.1558-5646.1996.tb03866.x.
3
NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION.
Evolution. 1976 Jun;30(2):314-334. doi: 10.1111/j.1558-5646.1976.tb00911.x.
4
Running with the Red Queen: the role of biotic conflicts in evolution.
Proc Biol Sci. 2014 Dec 22;281(1797). doi: 10.1098/rspb.2014.1382.
5
Coevolution can reverse predator-prey cycles.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7486-91. doi: 10.1073/pnas.1317693111. Epub 2014 May 5.
6
Coevolution and the effects of climate change on interacting species.
PLoS Biol. 2013 Oct;11(10):e1001685. doi: 10.1371/journal.pbio.1001685. Epub 2013 Oct 22.
7
Single-gene speciation with pleiotropy: effects of allele dominance, population size, and delayed inheritance.
Evolution. 2013 Jul;67(7):2011-23. doi: 10.1111/evo.12068. Epub 2013 Mar 6.
8
Evolutionary rescue: an emerging focus at the intersection between ecology and evolution.
Philos Trans R Soc Lond B Biol Sci. 2013 Jan 19;368(1610):20120404. doi: 10.1098/rstb.2012.0404.
9
Non-genetic inheritance and the patterns of antagonistic coevolution.
BMC Evol Biol. 2012 Jun 21;12:93. doi: 10.1186/1471-2148-12-93.
10
Population genetics of the white-phased "Spirit" black bear of British Columbia.
Evolution. 2012 Feb;66(2):305-13. doi: 10.1111/j.1558-5646.2011.01463.x. Epub 2011 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验