Yamamichi Masato, Ellner Stephen P
Hakubi Center for Advanced Research, Kyoto University, Sakyo, Kyoto 606-8501, Japan Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
Proc Biol Sci. 2016 Mar 30;283(1827):20152926. doi: 10.1098/rspb.2015.2926.
Coevolution is relentlessly creating and maintaining biodiversity and therefore has been a central topic in evolutionary biology. Previous theoretical studies have mostly considered coevolution between genetically symmetric traits (i.e. coevolution between two continuous quantitative traits or two discrete Mendelian traits). However, recent empirical evidence indicates that coevolution can occur between genetically asymmetric traits (e.g. between quantitative and Mendelian traits). We examine consequences of antagonistic coevolution mediated by a quantitative predator trait and a Mendelian prey trait, such that predation is more intense with decreased phenotypic distance between their traits (phenotype matching). This antagonistic coevolution produces a complex pattern of bifurcations with bistability (initial state dependence) in a two-dimensional model for trait coevolution. Furthermore, with eco-evolutionary dynamics (so that the trait evolution affects predator-prey population dynamics), we find that coevolution can cause rich dynamics including anti-phase cycles, in-phase cycles, chaotic dynamics and deterministic predator extinction. Predator extinction is more likely to occur when the prey trait exhibits complete dominance rather than semidominance and when the predator trait evolves very rapidly. Our study illustrates how recognizing the genetic architectures of interacting ecological traits can be essential for understanding the population and evolutionary dynamics of coevolving species.
协同进化不断地创造并维持生物多样性,因此一直是进化生物学的核心主题。以往的理论研究大多考虑基因对称性状之间的协同进化(即两个连续数量性状或两个离散孟德尔性状之间的协同进化)。然而,最近的实证证据表明,协同进化也可能发生在基因不对称性状之间(例如数量性状和孟德尔性状之间)。我们研究了由一个数量型捕食者性状和一个孟德尔型猎物性状介导的拮抗协同进化的后果,即性状之间的表型距离越小,捕食就越强烈(表型匹配)。这种拮抗协同进化在性状协同进化的二维模型中产生了具有双稳态(初始状态依赖性)的复杂分岔模式。此外,考虑到生态进化动力学(即性状进化影响捕食者 - 猎物种群动态),我们发现协同进化会导致丰富的动态变化,包括反相周期、同相周期、混沌动态和确定性的捕食者灭绝。当猎物性状表现出完全显性而非半显性,且捕食者性状进化非常迅速时,捕食者灭绝更有可能发生。我们的研究表明,认识到相互作用的生态性状的遗传结构对于理解协同进化物种的种群和进化动态至关重要。