Seiler Spencer T, Rich Isabel S, Lindquist Nathan C
Nanotechnology. 2016 May 6;27(18):184001. doi: 10.1088/0957-4484/27/18/184001. Epub 2016 Mar 24.
Plasmon-enhanced optical transmission through arrays of nano-structured holes has led to the development of a new generation of optical sensors. In this paper, to dramatically simplify the standard optical setups of these sensors, we position the nanoholes, an LED illumination source and a spacer layer directly on top of a CMOS imager chip. Transmitted light diffracts from the nanohole array, spreading into a spectrum over the space of a millimeter to land on the imager as a full spectrum. Our chip is used as a sensor in both a liquid and a gas environment. The spectrum is monitored in real-time and the plasmon-enhanced transmission peaks shift upon exposure to different concentrations of glycerol-in-water solutions or ethanol vapors in nitrogen. While liquids provide good refractive index contrast for sensing, to enhance sensitivity to solvent vapors, we filled the nanoholes with solvatochromic dyes. This on-chip solution circumvents the bulky components (e.g. microscopes, coupling optics, and spectrometers) needed for traditional plasmonic sensing setups, uses the nanohole array as both the sensing surface and a diffraction grating, and maintains good sensitivity. Finally, we show simultaneous sensing from two side-by-side locations, demonstrating potential for multiplexing and lab on a chip integration.
通过纳米结构孔阵列的表面等离子体激元增强光传输促成了新一代光学传感器的发展。在本文中,为了极大地简化这些传感器的标准光学装置,我们将纳米孔、一个发光二极管照明源和一个间隔层直接放置在互补金属氧化物半导体(CMOS)成像芯片的顶部。透射光从纳米孔阵列衍射出来,在毫米级空间内扩展成一个光谱,以全光谱形式落在成像器上。我们的芯片在液体和气体环境中均可用作传感器。光谱被实时监测,并且在暴露于氮气中不同浓度的甘油水溶液或乙醇蒸汽时,表面等离子体激元增强的传输峰发生移动。虽然液体为传感提供了良好的折射率对比度,但为了提高对溶剂蒸汽的灵敏度,我们在纳米孔中填充了溶剂致变色染料。这种片上解决方案避免了传统表面等离子体激元传感装置所需的庞大组件(如显微镜、耦合光学器件和光谱仪),将纳米孔阵列既用作传感表面又用作衍射光栅,并保持了良好的灵敏度。最后,我们展示了从两个并排位置同时进行传感,证明了多路复用和芯片实验室集成的潜力。