Ernst Dustin C, Anderson Mary E, Downs Diana M
Department of Microbiology, University of Georgia, Athens, GA, 30602-2605, USA.
Mol Microbiol. 2016 Jul;101(2):210-23. doi: 10.1111/mmi.13384. Epub 2016 May 6.
Unchecked amino acid accumulation in living cells has the potential to cause stress by disrupting normal metabolic processes. Thus, many organisms have evolved degradation strategies that prevent endogenous accumulation of amino acids. L-2,3-diaminopropionate (Dap) is a non-protein amino acid produced in nature where it serves as a precursor to siderophores, neurotoxins and antibiotics. Dap accumulation in Salmonella enterica was previously shown to inhibit growth by unknown mechanisms. The production of diaminopropionate ammonia-lyase (DpaL) alleviated Dap toxicity in S. enterica by catalyzing the degradation of Dap to pyruvate and ammonia. Here, we demonstrate that Dap accumulation in S. enterica elicits a proline requirement for growth and specifically inhibits coenzyme A and isoleucine biosynthesis. Additionally, we establish that the DpaL-dependent degradation of Dap to pyruvate proceeds through an unbound 2-aminoacrylate (2AA) intermediate, thus contributing to 2AA stress inside the cell. The reactive intermediate deaminase, RidA, is shown to prevent 2AA damage caused by DpaL-dependent Dap degradation by enhancing the rate of 2AA hydrolysis. The results presented herein inform our understanding of the effects Dap has on metabolism in S. enterica, and likely other organisms, and highlight the critical role played by RidA in preventing 2AA stress stemming from Dap detoxification.
活细胞中未受抑制的氨基酸积累有可能通过破坏正常代谢过程而导致应激。因此,许多生物体已经进化出降解策略来防止氨基酸在体内积累。L-2,3-二氨基丙酸(Dap)是自然界中产生的一种非蛋白质氨基酸,它作为铁载体、神经毒素和抗生素的前体。先前已证明肠炎沙门氏菌中Dap的积累会通过未知机制抑制生长。二氨基丙酸氨裂解酶(DpaL)的产生通过催化Dap降解为丙酮酸和氨来减轻肠炎沙门氏菌中Dap的毒性。在这里,我们证明肠炎沙门氏菌中Dap的积累引发了对脯氨酸的生长需求,并特异性抑制辅酶A和异亮氨酸的生物合成。此外,我们确定DpaL依赖的Dap降解为丙酮酸的过程通过未结合的2-氨基丙烯酸酯(2AA)中间体进行,从而导致细胞内的2AA应激。反应性中间体脱氨酶RidA被证明通过提高2AA水解速率来防止由DpaL依赖的Dap降解引起的2AA损伤。本文给出的结果有助于我们理解Dap对肠炎沙门氏菌以及可能对其他生物体代谢的影响,并突出了RidA在防止Dap解毒引起的2AA应激方面所起的关键作用。