Wang Yan, Wu Wei, Zhang Xian, Hu Xu, Li Yue, Lou Shihao, Ma Xiao, An Xu, Liu Hui, Peng Jing, Ma Danyi, Zhou Yifeng, Yang Yupeng
Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China Hefei, China.
Front Behav Neurosci. 2016 Mar 10;10:42. doi: 10.3389/fnbeh.2016.00042. eCollection 2016.
Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.
视觉感知学习(VPL)可以改善正常视力和视力受损个体的空间视觉。尽管先前对人类和大型动物的研究已经探索了VPL的神经基础,但阐明其潜在的细胞和分子机制仍然是一个挑战。由于分子遗传学和光遗传学操作的优势,小鼠是一个有前景的模型,有助于从机制上理解VPL。在这里,我们使用二选一的强制选择视觉水任务,全面评估了VPL对C57BL/6J小鼠空间视觉的影响和特性。简而言之,小鼠在对比度或空间频率(SF)的个体阈值附近进行了为期35天的长时间训练,用于图案辨别或视觉检测。训练后,对比度阈值训练的小鼠对比度敏感度(CS)提高了87%,视敏度(VA)提高了55%。同样,SF阈值训练的小鼠在VA方面表现出相当且持久的改善,并且在广泛的SF范围内CS有显著提高。此外,学习在很大程度上可以跨眼和刺激方向转移。有趣的是,学习可以从图案辨别任务转移到视觉检测任务,但反之则不行。我们验证了这种VPL完全恢复了成年弱视小鼠和老年小鼠的VA。综上所述,这些数据表明小鼠作为一个物种表现出可靠的VPL。内在信号光学成像显示,经过感知训练的小鼠初级视觉皮层(V1)中的截止SF高于未经过感知训练的小鼠。此外,感知训练导致V1第2/3层锥体神经元的树突棘密度增加。这些结果表明VPL过程中V1发生了功能和结构改变。总体而言,我们的VPL小鼠模型将为研究VPL的神经生物学基础提供一个平台。