Suppr超能文献

用于科研的观察性医疗保健数据库网络中的数据提取与管理:欧盟药物不良反应(EU-ADR)、观察医疗结果合作组织(OMOP)、小型哨点监测系统(Mini-Sentinel)和医学研究信息与计算中心(MATRICE)策略的比较

Data Extraction and Management in Networks of Observational Health Care Databases for Scientific Research: A Comparison of EU-ADR, OMOP, Mini-Sentinel and MATRICE Strategies.

作者信息

Gini Rosa, Schuemie Martijn, Brown Jeffrey, Ryan Patrick, Vacchi Edoardo, Coppola Massimo, Cazzola Walter, Coloma Preciosa, Berni Roberto, Diallo Gayo, Oliveira José Luis, Avillach Paul, Trifirò Gianluca, Rijnbeek Peter, Bellentani Mariadonata, van Der Lei Johan, Klazinga Niek, Sturkenboom Miriam

机构信息

Agenzia Regionale di Sanità della Toscana; Erasmus MC University Medical Center.

Janssen Research & Development, Epidemiology; Observational Health Data Sciences and Informatics (OHDSI).

出版信息

EGEMS (Wash DC). 2016 Feb 8;4(1):1189. doi: 10.13063/2327-9214.1189. eCollection 2016.

Abstract

INTRODUCTION

We see increased use of existing observational data in order to achieve fast and transparent production of empirical evidence in health care research. Multiple databases are often used to increase power, to assess rare exposures or outcomes, or to study diverse populations. For privacy and sociological reasons, original data on individual subjects can't be shared, requiring a distributed network approach where data processing is performed prior to data sharing.

CASE DESCRIPTIONS AND VARIATION AMONG SITES

We created a conceptual framework distinguishing three steps in local data processing: (1) data reorganization into a data structure common across the network; (2) derivation of study variables not present in original data; and (3) application of study design to transform longitudinal data into aggregated data sets for statistical analysis. We applied this framework to four case studies to identify similarities and differences in the United States and Europe: Exploring and Understanding Adverse Drug Reactions by Integrative Mining of Clinical Records and Biomedical Knowledge (EU-ADR), Observational Medical Outcomes Partnership (OMOP), the Food and Drug Administration's (FDA's) Mini-Sentinel, and the Italian network-the Integration of Content Management Information on the Territory of Patients with Complex Diseases or with Chronic Conditions (MATRICE).

FINDINGS

National networks (OMOP, Mini-Sentinel, MATRICE) all adopted shared procedures for local data reorganization. The multinational EU-ADR network needed locally defined procedures to reorganize its heterogeneous data into a common structure. Derivation of new data elements was centrally defined in all networks but the procedure was not shared in EU-ADR. Application of study design was a common and shared procedure in all the case studies. Computer procedures were embodied in different programming languages, including SAS, R, SQL, Java, and C++.

CONCLUSION

Using our conceptual framework we found several areas that would benefit from research to identify optimal standards for production of empirical knowledge from existing databases.an opportunity to advance evidence-based care management. In addition, formalized CM outcomes assessment methodologies will enable us to compare CM effectiveness across health delivery settings.

摘要

引言

我们看到现有观察性数据的使用日益增加,以便在医疗保健研究中快速、透明地生成经验证据。多个数据库经常被用于增强效力、评估罕见暴露或结局,或研究不同人群。出于隐私和社会学原因,个体受试者的原始数据无法共享,这就需要一种分布式网络方法,即在数据共享之前进行数据处理。

各站点之间的案例描述及差异

我们创建了一个概念框架,区分了本地数据处理的三个步骤:(1)将数据重新组织成网络通用的数据结构;(2)推导原始数据中不存在的研究变量;(3)应用研究设计将纵向数据转换为用于统计分析的汇总数据集。我们将此框架应用于四个案例研究,以识别美国和欧洲的异同:通过综合挖掘临床记录和生物医学知识探索与理解药物不良反应(EU-ADR)、观察性医疗结局合作组织(OMOP)、美国食品药品监督管理局(FDA)的Mini-Sentinel以及意大利网络——复杂疾病或慢性病患者区域内容管理信息整合(MATRICE)。

研究结果

国家级网络(OMOP、Mini-Sentinel、MATRICE)均采用了共享程序进行本地数据重组。跨国的EU-ADR网络需要本地定义程序,将其异构数据重组为通用结构。所有网络中,新数据元素的推导均由中央定义,但EU-ADR未共享该程序。研究设计的应用在所有案例研究中都是常见且共享的程序。计算机程序以不同的编程语言实现,包括SAS、R、SQL、Java和C++。

结论

使用我们的概念框架,我们发现了几个需要通过研究来确定从现有数据库生成经验知识的最佳标准的领域,这是推进循证护理管理的一个契机。此外,形式化的CM结局评估方法将使我们能够比较不同医疗服务环境下CM的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cab5/4780748/7b768847e028/egems1189f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验