Suppr超能文献

利用社交媒体在内城医院开展本地流感监测:一项回顾性观察研究。

Using Social Media to Perform Local Influenza Surveillance in an Inner-City Hospital: A Retrospective Observational Study.

作者信息

Broniatowski David Andre, Dredze Mark, Paul Michael J, Dugas Andrea

机构信息

Department of Engineering Management and Systems Engineering, The George Washington University, Washington, DC, United States.

Human Language Technology Center of Excellence, Johns Hopkins University, Baltimore, MD, United States.

出版信息

JMIR Public Health Surveill. 2015 Jan-Jun;1(1):e5. doi: 10.2196/publichealth.4472. Epub 2015 May 29.

Abstract

BACKGROUND

Public health officials and policy makers in the United States expend significant resources at the national, state, county, and city levels to measure the rate of influenza infection. These individuals rely on influenza infection rate information to make important decisions during the course of an influenza season driving vaccination campaigns, clinical guidelines, and medical staffing. Web and social media data sources have emerged as attractive alternatives to supplement existing practices. While traditional surveillance methods take 1-2 weeks, and significant labor, to produce an infection estimate in each locale, web and social media data are available in near real-time for a broad range of locations.

OBJECTIVE

The objective of this study was to analyze the efficacy of flu surveillance from combining data from the websites Google Flu Trends and HealthTweets at the local level. We considered both emergency department influenza-like illness cases and laboratory-confirmed influenza cases for a single hospital in the City of Baltimore.

METHODS

This was a retrospective observational study comparing estimates of influenza activity of Google Flu Trends and Twitter to actual counts of individuals with laboratory-confirmed influenza, and counts of individuals presenting to the emergency department with influenza-like illness cases. Data were collected from November 20, 2011 through March 16, 2014. Each parameter was evaluated on the municipal, regional, and national scale. We examined the utility of social media data for tracking actual influenza infection at the municipal, state, and national levels. Specifically, we compared the efficacy of Twitter and Google Flu Trends data.

RESULTS

We found that municipal-level Twitter data was more effective than regional and national data when tracking actual influenza infection rates in a Baltimore inner-city hospital. When combined, national-level Twitter and Google Flu Trends data outperformed each data source individually. In addition, influenza-like illness data at all levels of geographic granularity were best predicted by national Google Flu Trends data.

CONCLUSIONS

In order to overcome sensitivity to transient events, such as the news cycle, the best-fitting Google Flu Trends model relies on a 4-week moving average, suggesting that it may also be sacrificing sensitivity to transient fluctuations in influenza infection to achieve predictive power. Implications for influenza forecasting are discussed in this report.

摘要

背景

美国的公共卫生官员和政策制定者在国家、州、县和城市各级投入大量资源来衡量流感感染率。这些人依靠流感感染率信息在流感季节期间做出重要决策,推动疫苗接种运动、临床指南和医疗人员配置。网络和社交媒体数据源已成为补充现有做法的有吸引力的替代方案。虽然传统监测方法需要1至2周时间和大量人力才能在每个地区得出感染估计数,但网络和社交媒体数据几乎可以实时获取广泛地点的数据。

目的

本研究的目的是分析在地方层面结合谷歌流感趋势(Google Flu Trends)网站和HealthTweets数据进行流感监测的效果。我们考虑了巴尔的摩市一家医院的急诊科流感样疾病病例和实验室确诊的流感病例。

方法

这是一项回顾性观察研究,将谷歌流感趋势和推特(Twitter)对流感活动的估计与实验室确诊流感患者的实际数量以及因流感样疾病病例前往急诊科就诊的患者数量进行比较。数据收集时间为2011年11月20日至2014年3月16日。每个参数都在市、地区和国家层面进行了评估。我们研究了社交媒体数据在市、州和国家层面追踪实际流感感染情况的效用。具体而言,我们比较了推特和谷歌流感趋势数据的效果。

结果

我们发现,在追踪巴尔的摩市中心一家医院的实际流感感染率时,市级推特数据比地区和国家数据更有效。将国家级推特和谷歌流感趋势数据结合起来时,其表现优于各自单独的数据来源。此外,各级地理粒度的流感样疾病数据由国家级谷歌流感趋势数据预测效果最佳。

结论

为了克服对诸如新闻周期等短暂事件的敏感性,最合适的谷歌流感趋势模型依赖于4周移动平均值,这表明它可能也在牺牲对流感感染短暂波动的敏感性以实现预测能力。本报告讨论了对流感预测的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e01/4869236/971106011b36/publichealth_v1i1e5_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验