Suppr超能文献

利用 Twitter 进行疫情检测的评估:以禽流感为例

The Assessment of Twitter's Potential for Outbreak Detection: Avian Influenza Case Study.

机构信息

School of Computer Science, University of Guelph, Guelph, Ontario, Canada.

Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.

出版信息

Sci Rep. 2019 Dec 3;9(1):18147. doi: 10.1038/s41598-019-54388-4.

Abstract

Social media services such as Twitter are valuable sources of information for surveillance systems. A digital syndromic surveillance system has several advantages including its ability to overcome the problem of time delay in traditional surveillance systems. Despite the progress made with using digital syndromic surveillance systems, the possibility of tracking avian influenza (AI) using online sources has not been fully explored. In this study, a Twitter-based data analysis framework was developed to automatically monitor avian influenza outbreaks in a real-time manner. The framework was implemented to find worrisome posts and alerting news on Twitter, filter irrelevant ones, and detect the onset of outbreaks in several countries. The system collected and analyzed over 209,000 posts discussing avian influenza on Twitter from July 2017 to November 2018. We examined the potential of Twitter data to represent the date, severity and virus type of official reports. Furthermore, we investigated whether filtering irrelevant tweets can positively impact the performance of the system. The proposed approach was empirically evaluated using a real-world outbreak-reporting source. We found that 75% of real-world outbreak notifications of AI were identifiable from Twitter. This shows the capability of the system to serve as a complementary approach to official AI reporting methods. Moreover, we observed that one-third of outbreak notifications were reported on Twitter earlier than official reports. This feature could augment traditional surveillance systems and provide a possibility of early detection of outbreaks. This study could potentially provide a first stepping stone for building digital disease outbreak warning systems to assist epidemiologists and animal health professionals in making relevant decisions.

摘要

社交媒体服务,如 Twitter,是监测系统的有价值信息来源。数字综合征监测系统具有多种优势,包括能够克服传统监测系统中存在的时间延迟问题。尽管在使用数字综合征监测系统方面取得了进展,但利用在线资源追踪禽流感的可能性尚未得到充分探索。在这项研究中,开发了一个基于 Twitter 的数据分析框架,以实时自动监测禽流感的爆发情况。该框架旨在找到 Twitter 上令人担忧的帖子和警报新闻,过滤掉不相关的内容,并检测几个国家的爆发情况。该系统收集并分析了 209000 多条 2017 年 7 月至 2018 年 11 月期间在 Twitter 上讨论禽流感的帖子。我们研究了 Twitter 数据是否有可能代表官方报告的日期、严重程度和病毒类型。此外,我们还调查了过滤不相关的推文是否能对系统的性能产生积极影响。该方法使用真实世界的疫情报告源进行了实证评估。我们发现,75%的禽流感疫情官方通报都可以从 Twitter 上识别出来。这表明该系统有能力作为官方禽流感报告方法的补充。此外,我们观察到三分之一的疫情通报比官方报告更早出现在 Twitter 上。这一特征可以增强传统监测系统,并提供疫情早期检测的可能性。这项研究可能为建立数字疾病爆发预警系统提供一个初步的起点,以帮助流行病学家和动物健康专家做出相关决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0433/6890696/688d9d231a16/41598_2019_54388_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验