Suppr超能文献

一种处理身体活动数据的综合方法的有效性

Validity of an Integrative Method for Processing Physical Activity Data.

作者信息

Ellingson Laura D, Schwabacher Isaac J, Kim Youngwon, Welk Gregory J, Cook Dane B

机构信息

1Department of Kinesiology, Iowa State University, Ames, IA; 2Department of Kinesiology, University of Wisconsin-Madison, Madison, WI; 3William S. Middleton Memorial Veterans Hospital, Madison, WI; and 4MRC Epidemiology Unit, University of Cambridge, Cambridge, UNITED KINGDOM.

出版信息

Med Sci Sports Exerc. 2016 Aug;48(8):1629-38. doi: 10.1249/MSS.0000000000000915.

Abstract

UNLABELLED

Accurate assessments of both physical activity and sedentary behaviors are crucial to understand the health consequences of movement patterns and to track changes over time and in response to interventions.

PURPOSE

The study evaluates the validity of an integrative, machine learning method for processing activity monitor data in relation to a portable metabolic analyzer (Oxycon mobile [OM]) and direct observation (DO).

METHODS

Forty-nine adults (age 18-40 yr) each completed 5-min bouts of 15 activities ranging from sedentary to vigorous intensity in a laboratory setting while wearing ActiGraph (AG) on the hip, activPAL on the thigh, and OM. Estimates of energy expenditure (EE) and categorization of activity intensity were obtained from the AG processed with Lyden's sojourn (SOJ) method and from our new sojourns including posture (SIP) method, which integrates output from the AG and activPAL. Classification accuracy and estimates of EE were then compared with criterion measures (OM and DO) using confusion matrices and comparisons of the mean absolute error of log-transformed data (MAE ln Q).

RESULTS

The SIP method had a higher overall classification agreement (79%, 95% CI = 75%-82%) than the SOJ (56%, 95% CI = 52%-59%) based on DO. Compared with OM, estimates of EE from SIP had lower mean absolute error of log-transformed data than SOJ for light-intensity (0.21 vs 0.27), moderate-intensity (0.33 vs 0.42), and vigorous-intensity (0.16 vs 0.35) activities.

CONCLUSIONS

The SIP method was superior to SOJ for distinguishing between sedentary and light activities as well as estimating EE at higher intensities. Thus, SIP is recommended for research in which accuracy of measurement across the full range of activity intensities is of interest.

摘要

未标注

准确评估身体活动和久坐行为对于理解运动模式对健康的影响以及跟踪随时间变化和对干预措施的反应至关重要。

目的

本研究评估一种综合机器学习方法处理活动监测数据相对于便携式代谢分析仪(Oxycon mobile [OM])和直接观察(DO)的有效性。

方法

49名成年人(年龄18 - 40岁)在实验室环境中,每次完成5分钟的15种活动,活动强度从久坐到剧烈,同时在臀部佩戴ActiGraph(AG)、在大腿佩戴activPAL以及OM。能量消耗(EE)估计值和活动强度分类是通过用Lyden的停留时间(SOJ)方法处理AG以及用我们新的包括姿势(SIP)的停留时间方法获得的,SIP方法整合了AG和activPAL的输出。然后使用混淆矩阵以及对数转换数据的平均绝对误差比较(MAE ln Q)将分类准确性和EE估计值与标准测量方法(OM和DO)进行比较。

结果

基于DO,SIP方法的总体分类一致性(79%,95% CI = 75% - 82%)高于SOJ(56%,95% CI = 52% - 59%)。与OM相比,对于轻度强度(0.21对0.27)、中度强度(0.33对0.42)和剧烈强度(0.16对0.35)活动,SIP的EE估计值的对数转换数据的平均绝对误差低于SOJ。

结论

SIP方法在区分久坐和轻度活动以及估计较高强度的EE方面优于SOJ。因此,对于关注全范围活动强度测量准确性的研究,推荐使用SIP。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验