Suppr超能文献

伯纳特柯克斯体感染原代牛巨噬细胞并限制其宿主细胞反应。

Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.

作者信息

Sobotta Katharina, Hillarius Kirstin, Mager Marvin, Kerner Katharina, Heydel Carsten, Menge Christian

机构信息

Friedrich-Loeffler-Institut (FLI), Institute of Molecular Pathogenesis, Jena, Germany.

Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University (JLU), Giessen, Germany.

出版信息

Infect Immun. 2016 May 24;84(6):1722-1734. doi: 10.1128/IAI.01208-15. Print 2016 Jun.

Abstract

Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains.

摘要

尽管家畜长期以来一直被认为是人类Q热的主要来源,但对于专性细胞内革兰氏阴性菌伯纳特柯克斯体在其动物宿主中的生活方式却知之甚少。由于巨噬细胞被认为是该病原体的天然靶细胞,我们建立了原代牛单核细胞衍生巨噬细胞(MDM)作为体外感染模型,以在细胞水平上研究储存宿主与病原体之间的相互作用。此外,还纳入了牛肺泡巨噬细胞,以考虑宿主进入部位的细胞类型特性。细胞培养物接种了强毒株九英里I(NMI;I期)或无毒株九英里II(NMII;II期)。来自这两种来源的巨噬细胞都内化了NMI和NMII。MDM对NMI内化特别敏感,但NMI和NMII在这些细胞中的复制动力学相似。MDM在感染早期(感染后3小时)对接种的反应是Th1相关细胞因子如白细胞介素-1β(IL-1β)、IL-12和肿瘤坏死因子α(TNF-α)普遍上调。然而,当伯纳特柯克斯体开始复制时,炎症反应迅速下降。伯纳特柯克斯体感染抑制了IL-1β的翻译和释放,并且极大地未能刺激激活标志物如CD40、CD80、CD86和主要组织相容性复合体(MHC)分子表达的增加。这种限制促炎反应的能力可能有助于柯克斯体保护自己免受宿主免疫系统的清除。这些发现首次详细揭示了反刍动物中伯纳特柯克斯体与巨噬细胞的相互作用,并可能作为评估伯纳特柯克斯体菌株毒力和宿主适应性的基础。

相似文献

1
Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.
Infect Immun. 2016 May 24;84(6):1722-1734. doi: 10.1128/IAI.01208-15. Print 2016 Jun.
2
Interaction of Strains of Different Sources and Genotypes with Bovine and Human Monocyte-Derived Macrophages.
Front Cell Infect Microbiol. 2018 Jan 12;7:543. doi: 10.3389/fcimb.2017.00543. eCollection 2017.
4
Virulent Coxiella burnetii pathotypes productively infect primary human alveolar macrophages.
Cell Microbiol. 2013 Jun;15(6):1012-25. doi: 10.1111/cmi.12096. Epub 2013 Jan 14.
6
Coxiella burnetii interaction with neutrophils and macrophages in vitro and in SCID mice following aerosol infection.
Infect Immun. 2013 Dec;81(12):4604-14. doi: 10.1128/IAI.00973-13. Epub 2013 Sep 30.
8
Type I Interferon Counters or Promotes Coxiella burnetii Replication Dependent on Tissue.
Infect Immun. 2016 May 24;84(6):1815-1825. doi: 10.1128/IAI.01540-15. Print 2016 Jun.
9
Coxiella burnetii Virulent Phase I and Avirulent Phase II Variants Differentially Manipulate Autophagy Pathway in Neutrophils.
Infect Immun. 2022 Mar 17;90(3):e0053421. doi: 10.1128/IAI.00534-21. Epub 2022 Jan 31.

引用本文的文献

1
Q Fever Vaccines: Unveiling the Historical Journey and Contemporary Innovations in Vaccine Development.
Vaccines (Basel). 2025 Jan 31;13(2):151. doi: 10.3390/vaccines13020151.
2
Navigating Q fever: Current perspectives and challenges in outbreak preparedness.
Open Vet J. 2024 Oct;14(10):2509-2524. doi: 10.5455/OVJ.2024.v14.i10.2. Epub 2024 Oct 31.
3
Bovine blood derived macrophages are unable to control replication under hypoxic conditions.
Front Immunol. 2023 Jan 30;14:960927. doi: 10.3389/fimmu.2023.960927. eCollection 2023.
4
TGF-β/IFN-γ Antagonism in Subversion and Self-Defense of Phase II Coxiella burnetiiInfected Dendritic Cells.
Infect Immun. 2023 Feb 16;91(2):e0032322. doi: 10.1128/iai.00323-22. Epub 2023 Jan 23.
5
Phenotype of Strains of Different Sources and Genotypes in Bovine Mammary Gland Epithelial Cells.
Pathogens. 2022 Nov 26;11(12):1422. doi: 10.3390/pathogens11121422.
6
Early Cytokine Response After Vaccination with Phase I in an Infected Herd of Dairy Cattle.
J Vet Res. 2018 Dec 31;62(4):469-476. doi: 10.2478/jvetres-2018-0076. eCollection 2018 Dec.
7
Interaction of Strains of Different Sources and Genotypes with Bovine and Human Monocyte-Derived Macrophages.
Front Cell Infect Microbiol. 2018 Jan 12;7:543. doi: 10.3389/fcimb.2017.00543. eCollection 2017.

本文引用的文献

1
Bovine macrophages sense Escherichia coli Shiga toxin 1.
Innate Immun. 2015 Aug;21(6):655-64. doi: 10.1177/1753425915581215. Epub 2015 Apr 23.
3
The effect of C. burnetii infection on the cytokine response of PBMCs from pregnant goats.
PLoS One. 2014 Oct 3;9(10):e109283. doi: 10.1371/journal.pone.0109283. eCollection 2014.
4
Chlamydia psittaci: new insights into genomic diversity, clinical pathology, host-pathogen interaction and anti-bacterial immunity.
Int J Med Microbiol. 2014 Oct;304(7):877-93. doi: 10.1016/j.ijmm.2014.06.010. Epub 2014 Jun 28.
6
Antiapoptotic activity of Coxiella burnetii effector protein AnkG is controlled by p32-dependent trafficking.
Infect Immun. 2014 Jul;82(7):2763-71. doi: 10.1128/IAI.01204-13. Epub 2014 Apr 14.
7
Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening.
PLoS Pathog. 2014 Mar 20;10(3):e1004013. doi: 10.1371/journal.ppat.1004013. eCollection 2014 Mar.
8
High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk.
BMC Microbiol. 2014 Feb 17;14:41. doi: 10.1186/1471-2180-14-41.
9
Q fever in pregnant goats: humoral and cellular immune responses.
Vet Res. 2013 Aug 1;44(1):67. doi: 10.1186/1297-9716-44-67.
10
Virulent Coxiella burnetii pathotypes productively infect primary human alveolar macrophages.
Cell Microbiol. 2013 Jun;15(6):1012-25. doi: 10.1111/cmi.12096. Epub 2013 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验