Suppr超能文献

首次对红茶菌多微生物纤维素形成群落进行的与太空相关的研究:预备实验室实验。

The First Space-Related Study of a Kombucha Multimicrobial Cellulose-Forming Community: Preparatory Laboratory Experiments.

作者信息

Podolich O, Zaets I, Kukharenko O, Orlovska I, Reva O, Khirunenko L, Sosnin M, Haidak A, Shpylova S, Rohutskyy I, Kharina A, Skoryk М, Kremenskoy M, Klymchuk D, Demets R, de Vera J-P, Kozyrovska N

机构信息

Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str., 150, 03680, Kyiv, Ukraine.

Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, Pretoria, South Africa.

出版信息

Orig Life Evol Biosph. 2017 Jun;47(2):169-185. doi: 10.1007/s11084-016-9483-4. Epub 2016 Mar 30.

Abstract

Biofilm-forming microbial communities are known as the most robust assemblages that can survive in harsh environments. Biofilm-associated microorganisms display greatly increased resistance to physical and chemical adverse conditions, and they are expected to be the first form of life on Earth or anywhere else. Biological molecules synthesized by biofilm -protected microbiomes may serve as markers of the nucleoprotein life. We offer a new experimental model, a kombucha multimicrobial culture (KMC), to assess a structural integrity of a widespread microbial polymer - cellulose - as a biosignature of bacteria-producers for the multipurpose international project "BIOlogical and Mars Experiment (BIOMEX)", which aims to study the vitality of pro- and eukaryotic organisms and the stability of organic biomolecules in contact with minerals to analyze the detectability of life markers in the context of a planetary background. In this study, we aimed to substantiate the detectability of mineralized cellulose with spectroscopy and to study the KMC macrocolony phenotype stability under adverse conditions (UV, excess of inorganics etc.). Cellulose matrix of the KMC macrocolony has been mineralized in the mineral-water interface under assistance of KMC-members. Effect of bioleached ions on the cellulose matrix has been visible, and the FT-IR spectrum proved changes in cellulose structure. However, the specific cellulose band vibration, confirming the presence of β(1,4)-linkages between monomers, has not been quenched by secondary minerals formed on the surface of pellicle. The cellulose-based KMC macrocolony phenotype was in a dependence on extracellular matrix components (ionome, viriome, extracellular membrane vesicles), which provided its integrity and rigidness in a certain extent under impact of stressful factors.

摘要

形成生物膜的微生物群落是已知最具韧性的组合,能够在恶劣环境中生存。与生物膜相关的微生物对物理和化学不利条件的抵抗力大大增强,它们有望成为地球上或其他任何地方的第一种生命形式。由生物膜保护的微生物群落合成的生物分子可能作为核蛋白生命的标志物。我们提供了一种新的实验模型——康普茶多微生物培养物(KMC),以评估一种广泛存在的微生物聚合物——纤维素——的结构完整性,作为多用途国际项目“生物与火星实验(BIOMEX)”中细菌生产者的生物特征,该项目旨在研究原核生物和真核生物的活力以及与矿物质接触时有机生物分子的稳定性,以分析在行星背景下生命标志物的可检测性。在本研究中,我们旨在用光谱法证实矿化纤维素的可检测性,并研究KMC大菌落表型在不利条件(紫外线、无机物过量等)下的稳定性。KMC大菌落的纤维素基质在KMC成员的协助下在矿泉水界面发生了矿化。生物浸出离子对纤维素基质的影响是可见的,傅里叶变换红外光谱证明了纤维素结构的变化。然而,确认单体之间存在β(1,4)-连接的特定纤维素带振动并未被在菌膜表面形成的次生矿物淬灭。基于纤维素的KMC大菌落表型依赖于细胞外基质成分(离子组、病毒组、细胞外膜泡),这些成分在压力因素的影响下在一定程度上提供了其完整性和刚性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验