Wiktor Jakub, Lesterlin Christian, Sherratt David J, Dekker Cees
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands.
Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
Nucleic Acids Res. 2016 May 5;44(8):3801-10. doi: 10.1093/nar/gkw214. Epub 2016 Apr 1.
Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering.
细胞周期的可编程控制已被证明是细胞生物学研究中的一种强大工具。在此,我们基于CRISPR/dCas9与复制起点位点的结合,开发了一种用于控制细菌细胞周期的新型系统。细菌染色体复制的起始由DnaA蛋白精确调控,该蛋白促进oriC处DNA的解旋。我们证明,CRISPR/dCas9与复制起点内的任何位置结合都会阻断复制的起始。连续稀释平板培养、单细胞荧光显微镜和流式细胞术实验表明,在CRISPR/dCas9结合后,正在进行的几轮染色体复制会完成,但不会启动新的轮次。细胞停滞时,代谢仍保持活跃并积累细胞质量。我们发现,将温度从37°C提高到42°C可解除CRISR/dCas9对复制的抑制,我们利用这一特性使细胞从停滞状态中恢复。我们这种控制细菌细胞周期的简单且强大的方法,特别是对合成生物学和DNA复制研究而言,是一项有用的资产。此外,高温下CRISPR/dCas9结合的失活可能在基因组工程中的CRISPR/Cas9应用方面具有广泛的意义。