Lee Danna, Muir Petra, Lundberg Sara, Lundholm August, Sandegren Linus, Koskiniemi Sanna
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
Sci Rep. 2025 Jan 9;15(1):1545. doi: 10.1038/s41598-025-85334-2.
Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug. Therefore, we developed an engineered CRISPR-Cas9 system that protects bacteria from horizontal gene transfer. We synthesized a CRISPR locus targeting eight AMR genes and cloned this with the Cas9 and transacting tracrRNA on a medium copy plasmid. We next evaluated the efficiency of the system to block HGT through transformation, transduction, and conjugation. Our results show that expression of the CRISPR-Cas9 system successfully protects E. coli MG1655 from acquiring the targeted resistance genes by transformation or transduction with 2-3 logs of protection depending on the system for transfer and the target gene. Furthermore, we show that the system blocks conjugation of a set of clinical plasmids, and that the system is also able to protect the probiotic bacterium E. coli Nissle 1917 from acquiring AMR genes.
抗菌耐药性(AMR)在全球范围内是一个日益严重的问题,因此迫切需要针对细菌感染的新治疗方案。工程益生菌在治疗或预防细菌感染方面显示出强大的潜力。然而,使用活细菌的一个担忧是细菌通过水平基因转移(HGT)获得编码AMR或毒力因子的基因,以及益生菌转变为超级细菌的风险。因此,我们开发了一种工程化的CRISPR-Cas9系统,可保护细菌免受水平基因转移。我们合成了一个靶向八个AMR基因的CRISPR基因座,并将其与Cas9和反式作用的tracrRNA一起克隆到一个中拷贝质粒上。接下来,我们评估了该系统通过转化、转导和接合来阻断HGT的效率。我们的结果表明,CRISPR-Cas9系统的表达成功地保护了大肠杆菌MG1655通过转化或转导获得靶向抗性基因,根据转移系统和靶基因的不同,保护程度可达2-3个对数。此外,我们表明该系统可阻断一组临床质粒的接合,并且该系统还能够保护益生菌大肠杆菌Nissle 1917不获得AMR基因。