Lee Mark J, Geller Alexander M, Bamford Natalie C, Liu Hong, Gravelat Fabrice N, Snarr Brendan D, Le Mauff François, Chabot Joseé, Ralph Benjamin, Ostapska Hanna, Lehoux Mélanie, Cerone Robert P, Baptista Stephanie D, Vinogradov Evgeny, Stajich Jason E, Filler Scott G, Howell P Lynne, Sheppard Donald C
Departments of Medicine and of Microbiology and Immunology, McGill University, Montréal, Canada.
Program in Molecular Structure & Function, The Hospital for Sick Children, Toronto, Canada Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada.
mBio. 2016 Apr 5;7(2):e00252-16. doi: 10.1128/mBio.00252-16.
The mold Aspergillus fumigatus causes invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetylgalactosamine (GalNAc), was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(β1-6)-N-acetyl-D-glucosamine (PNAG). Bioinformatic analyses suggested that the GAG cluster gene agd3 encodes a protein containing a deacetylase domain. Because deacetylation of N-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3 mutant in the presence of culture supernatants of the GAG-deficient Δuge3 mutant rescued the biofilm defect of the Δagd3 mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of the Pezizomycotina subphylum of the Ascomycota including a number of plant-pathogenic fungi and a single basidiomycete species,Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation.
This study sheds light on the biosynthetic pathways governing the synthesis of galactosaminogalactan (GAG), which plays a key role in A. fumigatus virulence and biofilm formation. We find that bacteria and fungi use similar strategies to synthesize adhesive biofilm exopolysaccharides. The presence of orthologs of the GAG biosynthetic gene clusters in multiple fungi suggests that this exopolysaccharide may also be important in the virulence of other fungal pathogens. Further, these studies establish a molecular mechanism of adhesion in which GAG interacts via charge-charge interactions to bind to both fungal hyphae and other substrates. Finally, the importance of deacetylation in the synthesis of functional GAG and the extracellular localization of this process suggest that inhibition of deacetylation may be an attractive target for the development of novel antifungal therapies.
烟曲霉可在免疫功能低下的患者中引起侵袭性感染。最近,半乳糖氨基半乳聚糖(GAG),一种由半乳糖和N - 乙酰半乳糖胺(GalNAc)组成的胞外多糖,被鉴定为生物膜形成所需的毒力因子。GAG生物合成以及GAG介导的生物膜形成的分子机制尚不清楚。我们鉴定出一组五个共调控基因,它们在GAG缺陷型突变体中表达失调,其基因产物与介导细菌生物膜胞外多糖聚 -(β1 - 6)- N - 乙酰 - D - 葡萄糖胺(PNAG)合成的蛋白质具有功能相似性。生物信息学分析表明,GAG基因簇基因agd3编码一种含有脱乙酰酶结构域的蛋白质。由于N - 乙酰葡萄糖胺残基的脱乙酰化对PNAG的功能至关重要,我们研究了GAG脱乙酰化在真菌生物膜形成中的作用。发现Agd3介导GAG内GalNAc残基的脱乙酰化,并使多糖带聚阳离子电荷。与PNAG一样,脱乙酰化对于GAG与菌丝的粘附以及生物膜形成是必需的。在GAG缺陷型Δuge3突变体的培养上清液存在下,Δagd3突变体的生长挽救了Δagd3突变体的生物膜缺陷并恢复了GAG的粘附特性,表明脱乙酰化是一个细胞外过程。GAG生物合成基因簇存在于子囊菌门盘菌亚门成员的基因组中,包括许多植物病原真菌和一个担子菌物种,浅黄丝孢酵母,这可能是近期水平基因转移的结果。当前研究表明,阳离子化、脱乙酰化胞外多糖的产生是真菌和细菌用于生物膜形成的一种策略。
本研究揭示了控制半乳糖氨基半乳聚糖(GAG)合成的生物合成途径,GAG在烟曲霉的毒力和生物膜形成中起关键作用。我们发现细菌和真菌使用相似的策略来合成粘性生物膜胞外多糖。多个真菌中GAG生物合成基因簇直系同源物的存在表明,这种胞外多糖在其他真菌病原体的毒力中可能也很重要。此外,这些研究建立了一种粘附的分子机制,其中GAG通过电荷 - 电荷相互作用与真菌菌丝和其他底物结合。最后,脱乙酰化在功能性GAG合成中的重要性以及该过程的细胞外定位表明,抑制脱乙酰化可能是开发新型抗真菌疗法的一个有吸引力的靶点。