Gardner Benjamin, Stone Nicholas, Matousek Pavel
Biomedical Physics, School of Physics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK.
Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell, Oxford, OX11 0QX, UK.
Faraday Discuss. 2016 Jun 23;187:329-39. doi: 10.1039/c5fd00154d.
Here we demonstrate for the first time the viability of characterising non-invasively the subsurface temperature of SERS nanoparticles embedded within biological tissues using spatially offset Raman spectroscopy (SORS). The proposed analytical method (T-SESORS) is applicable in general to diffusely scattering (turbid) media and features high sensitivity and high chemical selectivity. The method relies on monitoring the Stokes and anti-Stokes bands of SERS nanoparticles in depth using SORS. The approach has been conceptually demonstrated using a SORS variant, transmission Raman spectroscopy (TRS), by measuring subsurface temperatures within a slab of porcine tissue (5 mm thick). Root-mean-square errors (RMSEs) of 0.20 °C were achieved when measuring temperatures over ranges between 25 and 44 °C. This unique capability complements the array of existing, predominantly surface-based, temperature monitoring techniques. It expands on a previously demonstrated SORS temperature monitoring capability by adding extra sensitivity stemming from SERS to low concentration analytes. The technique paves the way for a wide range of applications including subsurface, chemical-specific, non-invasive temperature analysis within turbid translucent media including: the human body, subsurface monitoring of chemical (e.g. catalytic) processes in manufacture quality and process control and research. Additionally, the method opens prospects for control of thermal treatment of cancer in vivo with direct non-invasive feedback on the temperature of mediating plasmonic nanoparticles.
在此,我们首次证明了使用空间偏移拉曼光谱(SORS)对嵌入生物组织中的表面增强拉曼散射(SERS)纳米颗粒的地下温度进行非侵入性表征的可行性。所提出的分析方法(T-SESORS)一般适用于漫散射(浑浊)介质,具有高灵敏度和高化学选择性。该方法依赖于使用SORS深度监测SERS纳米颗粒的斯托克斯和反斯托克斯波段。通过测量猪组织平板(5毫米厚)内的地下温度,已使用SORS变体——透射拉曼光谱(TRS)从概念上证明了该方法。在25至44°C的温度范围内进行测量时,均方根误差(RMSE)达到0.20°C。这种独特的能力补充了现有的一系列主要基于表面的温度监测技术。它通过增加源自SERS对低浓度分析物的额外灵敏度,扩展了先前证明的SORS温度监测能力。该技术为广泛的应用铺平了道路,包括在浑浊半透明介质(包括人体)内进行地下、化学特异性、非侵入性温度分析;在制造质量和过程控制以及研究中对化学(如催化)过程进行地下监测。此外,该方法为体内癌症热处理的控制开辟了前景,可对介导的等离子体纳米颗粒的温度进行直接非侵入性反馈。