Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada.
Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2404460121. doi: 10.1073/pnas.2404460121. Epub 2024 Nov 5.
The proportions of carbon (C), nitrogen (N), and phosphorus (P) in surface ocean particulate matter deviate greatly from the canonical Redfield Ratio (C:N:P = 106:16:1) in space and time with significant implications for global carbon storage as this matter reaches the deep ocean. Recent work has revealed clear latitudinal patterns in C:N:P, yet the relative importance of ecological, physiological, or biochemical processes in creating these patterns is unclear. We present high-resolution, concurrent measurements of particulate C:N:P, macromolecular composition, environmental conditions, and plankton community composition from a transect spanning a subtropical-subpolar boundary, the North Pacific Transition Zone. We find that the summed contribution of macromolecules to particulate C, N, and P is consistent with, and provides interpretation for, particulate C:N:P patterns. A decline in particulate C:N from the subtropical to subpolar North Pacific largely reflects an increase in the relative contribution of protein compared to carbohydrate and lipid, whereas variation in C:P and N:P correspond to shifts in protein relative to polyphosphate, DNA, and RNA. Possible causes for the corresponding trends in C:N and macromolecular composition include physiological responses and changes in community structure of phytoplankton, which represented approximately 1/3 of particulate C across the transect. Comparison with culture experiments and an allocation-based model of phytoplankton macromolecular composition suggest that physiological acclimation to changing nutrient supply is the most likely explanation for the latitudinal trend in C:N, offering both a mechanistic interpretation and biochemical basis for large-scale patterns in C:N:P.
海洋表层颗粒物质中的碳(C)、氮(N)和磷(P)比例在空间和时间上与标准的雷菲尔德比值(C:N:P=106:16:1)有很大的偏差,这对全球碳储存有重大影响,因为这些物质到达深海。最近的研究揭示了 C:N:P 明显的纬度模式,但在形成这些模式方面,生态、生理或生化过程的相对重要性尚不清楚。我们从横跨亚热带-亚极地边界的北太平洋过渡区提供了高分辨率、同时测量的颗粒 C:N:P、大分子组成、环境条件和浮游生物群落组成的数据。我们发现,大分子对颗粒 C、N 和 P 的总贡献与颗粒 C:N:P 模式一致,并为其提供了解释。从亚热带到亚极北海域,颗粒 C:N 的下降在很大程度上反映了与碳水化合物和脂质相比,蛋白质的相对贡献增加,而 C:P 和 N:P 的变化则对应于蛋白质相对于多磷酸盐、DNA 和 RNA 的相对变化。C:N 和大分子组成相应趋势的可能原因包括浮游植物的生理反应和群落结构变化,这些浮游植物在整个横断面上约占颗粒 C 的 1/3。与培养实验和浮游植物大分子组成的基于分配的模型进行比较表明,对养分供应变化的生理适应是 C:N 纬度趋势最有可能的解释,为 C:N:P 的大尺度模式提供了机制解释和生化基础。