Suppr超能文献

采用分散固相萃取结合气相色谱-串联质谱法测定烟草及无烟烟草制品中的九种挥发性N-亚硝胺。

Determination of nine volatile N-nitrosamines in tobacco and smokeless tobacco products by dispersive solid-phase extraction with gas chromatography and tandem mass spectrometry.

作者信息

Lv Fang, Guo Junwei, Yu Fei, Zhang Tingting, Zhang Shimin, Cui Huapeng, Liu Xianjun, Chen Li, Liu Leiyu, Liu Shaofeng, Xie Fuwei

机构信息

Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China.

China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou, China.

出版信息

J Sep Sci. 2016 Jun;39(11):2123-8. doi: 10.1002/jssc.201600037. Epub 2016 Apr 28.

Abstract

A method was developed for the determination of nine volatile N-nitrosamines in tobacco and smokeless tobacco products. The targets are N-nitrosodimethylamine, N-nitrosopyrrolidine, N-nitrosopiperidine, N-nitrosomorpholine, N-nitrosoethylmethylamine, N-nitrosodiethylamine, N-nitrosodipropylamine, N-nitrosobuylmethylmine, and N-nitrosodibutylamine. The samples were treated by dispersive solid-phase extraction using 1 g of primary secondary amine and 0.5 g of carbon and then analyzed by gas chromatography with tandem mass spectrometry with an electron impact ion source. The recoveries for the targets ranged from 84 to 118%, with <16% relative standard deviations at three spiking levels of 0.5, 1.25, and 2.5 ng/g. The limits of detection ranged from 0.03 to 0.15 ng/g. With the use of the proposed method, we detected the presence of six nitrosamines in the range of 0.4-30.7 ng/g. The study demonstrated that the method could be used as a rapid, convenient, and high-throughput method for N-nitrosamines analysis in tobacco matrix.

摘要

开发了一种用于测定烟草和无烟烟草制品中9种挥发性N-亚硝胺的方法。目标物为N-亚硝基二甲胺、N-亚硝基吡咯烷、N-亚硝基哌啶、N-亚硝基吗啉、N-亚硝基乙甲胺、N-亚硝基二乙胺、N-亚硝基二丙胺、N-亚硝基丁甲胺和N-亚硝基二丁胺。样品采用分散固相萃取法处理,使用1 g伯仲胺和0.5 g碳,然后通过带有电子轰击离子源的气相色谱-串联质谱法进行分析。目标物的回收率在84%至118%之间,在0.5、1.25和2.5 ng/g三个加标水平下相对标准偏差<16%。检测限在0.03至0.15 ng/g之间。使用所提出的方法,我们检测到6种亚硝胺的含量在0.4 - 30.7 ng/g范围内。该研究表明,该方法可作为一种快速、便捷且高通量的方法用于烟草基质中N-亚硝胺的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验