MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
Curr Opin Plant Biol. 2016 Jun;31:66-75. doi: 10.1016/j.pbi.2016.03.009. Epub 2016 Apr 6.
All cyanobacteria contain carboxysomes, RuBisCO-encapsulating bacterial microcompartments that function as prokaryotic organelles. The two carboxysome types, alpha and beta, differ fundamentally in components, assembly, and species distribution. Alpha carboxysomes share a highly-conserved gene organization, with evidence of horizontal gene transfer from chemoautotrophic proteobacteria to the picocyanobacteria, and seem to co-assemble shells concomitantly with aggregation of cargo enzymes. In contrast, beta carboxysomes assemble an enzymatic core first, with an encapsulation peptide playing a critical role in formation of the surrounding shell. Based on similarities in assembly, and phylogenetic analysis of the pentameric shell protein conserved across all bacterial microcompartments, beta carboxysomes appear to be more closely related to the microcompartments of heterotrophic bacteria (metabolosomes) than to alpha carboxysomes, which appear deeply divergent. Beta carboxysomes can be found in the basal cyanobacterial clades that diverged before the ancestor of the chloroplast and have recently been shown to be able to encapsulate functional RuBisCO enzymes resurrected from ancestrally-reconstructed sequences, consistent with an ancient origin. Alpha and beta carboxysomes are not only distinct units of evolution, but are now emerging as genetic/metabolic modules for synthetic biology; heterologous expression and redesign of both the shell and the enzymatic core have recently been achieved.
所有蓝藻都含有羧化体,这是一种包裹 RuBisCO 的细菌微区室,其功能类似于原核细胞器。羧化体有两种类型,α型和β型,在组成成分、组装和物种分布上有根本的不同。α型羧化体具有高度保守的基因组织,有证据表明它是通过水平基因转移从化能自养菌转移到了 småcyanobacteria,并且似乎与货物酶的聚集同时组装外壳。相比之下,β型羧化体首先组装酶核心,然后用一个封装肽在外壳的形成中起关键作用。基于组装的相似性,以及对所有细菌微区室都保守的五聚体外壳蛋白的系统发育分析,β型羧化体似乎与异养菌的微区室(代谢体)更密切相关,而与α型羧化体关系较远,后者似乎分化得很深。β型羧化体可以在叶绿体祖先之前就已经分化的基础蓝藻分支中找到,最近的研究表明,它们能够封装从祖先重建的序列中复活的功能性 RuBisCO 酶,这与古老的起源是一致的。α型和β型羧化体不仅是进化的不同单位,而且现在正作为合成生物学的遗传/代谢模块出现;最近已经实现了外壳和酶核心的异源表达和重新设计。
Curr Opin Plant Biol. 2016-4-6
Nat Commun. 2022-7-25
J Mol Microbiol Biotechnol. 2013
Mol Microbiol. 2021-7
Trends Microbiol. 2022-6
Nat Rev Microbiol. 2008-9
Biochem Soc Trans. 2025-6-30
Plants (Basel). 2025-3-13
Adv Sci (Weinh). 2025-4-1
Appl Environ Microbiol. 2025-4-23