Suppr超能文献

用于有效追踪的可调谐放大拉曼金纳米探针(TARGET):体内传感与成像

Tunable and amplified Raman gold nanoprobes for effective tracking (TARGET): in vivo sensing and imaging.

作者信息

Gandra Naveen, Hendargo Hansford C, Norton Stephen J, Fales Andrew M, Palmer Gregory M, Vo-Dinh Tuan

机构信息

Duke University, Departments of Biomedical Engineering and Chemistry and the Fitzpatrick Institute for Photonics, 2589 CIEMAS, Durham, NC 27708, USA.

出版信息

Nanoscale. 2016 Apr 28;8(16):8486-94. doi: 10.1039/c5nr08980h. Epub 2016 Apr 11.

Abstract

We describe the development of a highly tunable, physiologically stable, and ultra-bright Raman probe, named as TARGET (Tunable and Amplified Raman Gold Nanoprobes for Effective Tracking), for in vitro and in vivo surface-enhanced Raman scattering (SERS) applications. The TARGET structure consists of a gold core inside a larger gold shell with a tunable interstitial gap similar to a "nanorattle" structure. The combination of galvanic replacement and the seed mediated growth method was employed to load Raman reporter molecules and subsequently close the pores to prevent leaking and degradation of reporters under physiologically extreme conditions. Precise tuning of the core-shell gap width, core size, and shell thickness allows us to modulate the plasmonic effect and achieve a maximum electric-field (E-field) intensity. The interstitial gap of TARGET nanoprobes can be designed to exhibit a plasmon absorption band at 785 nm, which is in resonance with the dye absorption maximum and lies in the "tissue optical window", resulting in ultra-bright SERS signals for in vivo studies. The results of in vivo measurements of TARGETs in laboratory mice illustrated the usefulness of these nanoprobes for medical sensing and imaging.

摘要

我们描述了一种名为TARGET(用于有效追踪的可调谐且增强的拉曼金纳米探针)的高度可调谐、生理稳定且超亮的拉曼探针的开发,用于体外和体内表面增强拉曼散射(SERS)应用。TARGET结构由一个较大金壳内的金核组成,具有类似于“纳米摇铃”结构的可调间隙。采用电化学生长置换和种子介导生长方法相结合的方式加载拉曼报告分子,随后封闭孔隙,以防止报告分子在极端生理条件下泄漏和降解。对核壳间隙宽度、核尺寸和壳厚度进行精确调节,使我们能够调节等离子体效应并实现最大电场(E场)强度。TARGET纳米探针的间隙可设计为在785nm处呈现等离子体吸收带,该吸收带与染料吸收最大值共振且位于“组织光学窗口”内,从而在体内研究中产生超亮的SERS信号。在实验室小鼠体内对TARGET进行测量的结果表明了这些纳米探针在医学传感和成像方面的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验