Cerulus Bram, New Aaron M, Pougach Ksenia, Verstrepen Kevin J
KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium; VIB Laboratory of Systems Biology, Gaston Geenslaan 1, 3001 Leuven, Belgium.
KU Leuven Department Microbiële en Moleculaire Systemen, CMPG Laboratory of Genetics and Genomics, Gaston Geenslaan 1, 3001 Leuven, Belgium; VIB Laboratory of Systems Biology, Gaston Geenslaan 1, 3001 Leuven, Belgium; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.
Curr Biol. 2016 May 9;26(9):1138-47. doi: 10.1016/j.cub.2016.03.010. Epub 2016 Apr 7.
The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors.
生物噪声的适应性影响仍不清楚。例如,即使在克隆微生物群体中,单个细胞的生长速度也不同。虽然已知个体的平均生长速度会影响群体水平的适应性,但尚不清楚生长速度的异质性本身如何或是否受到自然选择的影响。在这里,我们表明有噪声的单细胞分裂时间会显著影响群体水平的生长速率。通过延时显微镜测量不同遗传和环境背景下数千个酿酒酵母单细胞的分裂时间,我们发现克隆个体之间单个细胞的分裂时间长度可能有很大差异,并且亚谱系通常表现出分裂时间的表观遗传继承。通过将这些实验测量结果与数学模型相结合,我们发现,对于给定的平均分裂时间,增加分裂时间的异质性和表观遗传继承会提高群体生长速率。此外,我们证明单细胞分裂时间的异质性和表观遗传继承可能与分解代谢基因表达的变化有关。综上所述,我们的结果揭示了有噪声的单细胞行为变化如何通过独立于均值变化所产生影响的动态过程直接影响适应性。这些结果不仅有助于更好地理解微生物适应性,还有助于更准确地预测其他克隆群体(如肿瘤)的适应性。