Hunkeler Moritz, Stuttfeld Edward, Hagmann Anna, Imseng Stefan, Maier Timm
Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
Nat Commun. 2016 Apr 13;7:11196. doi: 10.1038/ncomms11196.
Acetyl-CoA carboxylases (ACCs) catalyse the committed step in fatty-acid biosynthesis: the ATP-dependent carboxylation of acetyl-CoA to malonyl-CoA. They are important regulatory hubs for metabolic control and relevant drug targets for the treatment of the metabolic syndrome and cancer. Eukaryotic ACCs are single-chain multienzymes characterized by a large, non-catalytic central domain (CD), whose role in ACC regulation remains poorly characterized. Here we report the crystal structure of the yeast ACC CD, revealing a unique four-domain organization. A regulatory loop, which is phosphorylated at the key functional phosphorylation site of fungal ACC, wedges into a crevice between two domains of CD. Combining the yeast CD structure with intermediate and low-resolution data of larger fragments up to intact ACCs provides a comprehensive characterization of the dynamic fungal ACC architecture. In contrast to related carboxylases, large-scale conformational changes are required for substrate turnover, and are mediated by the CD under phosphorylation control.
乙酰辅酶A羧化酶(ACCs)催化脂肪酸生物合成中的关键步骤:将乙酰辅酶A以ATP依赖的方式羧化为丙二酰辅酶A。它们是代谢控制的重要调节枢纽,也是治疗代谢综合征和癌症的相关药物靶点。真核生物的ACCs是单链多酶,其特征在于一个大的非催化中央结构域(CD),其在ACC调节中的作用仍不清楚。在此,我们报道了酵母ACC CD的晶体结构,揭示了一种独特的四结构域组织。一个在真菌ACC的关键功能磷酸化位点被磷酸化的调节环,楔入CD的两个结构域之间的缝隙中。将酵母CD结构与直至完整ACCs的较大片段的中低分辨率数据相结合,可全面表征动态真菌ACC结构。与相关羧化酶不同,底物周转需要大规模的构象变化,并且由磷酸化控制下的CD介导。