Banerjee Soumya, Guedj Jeremie, Ribeiro Ruy M, Moses Melanie, Perelson Alan S
Department of Computer Science, University of New Mexico, Albuquerque, NM, USA Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA.
J R Soc Interface. 2016 Apr;13(117). doi: 10.1098/rsif.2016.0130. Epub 2016 Apr 13.
West Nile virus (WNV) is an emerging pathogen that has decimated bird populations and caused severe outbreaks of viral encephalitis in humans. Currently, little is known about the within-host viral kinetics of WNV during infection. We developed mathematical models to describe viral replication, spread and host immune response in wild-type and immunocompromised mice. Our approach fits a target cell-limited model to viremia data from immunocompromised knockout mice and an adaptive immune response model to data from wild-type mice. Using this approach, we first estimate parameters governing viral production and viral spread in the host using simple models without immune responses. We then use these parameters in a more complex immune response model to characterize the dynamics of the humoral immune response. Despite substantial uncertainty in input parameters, our analysis generates relatively precise estimates of important viral characteristics that are composed of nonlinear combinations of model parameters: we estimate the mean within-host basic reproductive number,R0, to be 2.3 (95% of values in the range 1.7-2.9); the mean infectious virion burst size to be 2.9 plaque-forming units (95% of values in the range 1.7-4.7); and the average number of cells infected per infectious virion to be between 0.3 and 0.99. Our analysis gives mechanistic insights into the dynamics of WNV infection and produces estimates of viral characteristics that are difficult to measure experimentally. These models are a first step towards a quantitative understanding of the timing and effectiveness of the humoral immune response in reducing host viremia and consequently the epidemic spread of WNV.
西尼罗河病毒(WNV)是一种新出现的病原体,它已使鸟类种群数量大幅减少,并在人类中引发了病毒性脑炎的严重疫情。目前,对于WNV在感染期间的宿主体内病毒动力学知之甚少。我们开发了数学模型来描述野生型和免疫受损小鼠体内的病毒复制、传播及宿主免疫反应。我们的方法将一个靶细胞限制模型应用于免疫受损基因敲除小鼠的病毒血症数据,并将一个适应性免疫反应模型应用于野生型小鼠的数据。使用这种方法,我们首先利用无免疫反应的简单模型估计宿主中控制病毒产生和病毒传播的参数。然后,我们在一个更复杂的免疫反应模型中使用这些参数来描述体液免疫反应的动态变化。尽管输入参数存在很大不确定性,但我们的分析对由模型参数的非线性组合构成的重要病毒特征产生了相对精确的估计:我们估计宿主体内的平均基本繁殖数R0为2.3(95%的值在1.7 - 2.9范围内);平均感染性病毒粒子爆发大小为2.9个噬斑形成单位(95%的值在1.7 - 4.7范围内);每个感染性病毒粒子感染的细胞平均数量在0.3至0.99之间。我们的分析为WNV感染的动态变化提供了机制性见解,并得出了难以通过实验测量的病毒特征估计值。这些模型是朝着定量理解体液免疫反应在降低宿主病毒血症以及WNV疫情传播方面的时间和有效性迈出的第一步。