Suppr超能文献

小鼠脑电图/肌电图与L-谷氨酸的同步实时测量:睡眠期间神经元活动的生物传感器研究。

Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep.

作者信息

Naylor Erik, Aillon Daniel V, Gabbert Seth, Harmon Hans, Johnson David A, Wilson George S, Petillo Peter A

机构信息

Pinnacle Technology Inc., 2721 Oregon Street, Lawrence, KS 66046, United States.

Department of Chemistry, Malott Hall, Room 3027, University of Kansas, Lawrence, KS 66045, United States.

出版信息

J Electroanal Chem (Lausanne). 2011 Jun 15;656(1-2):106-113. doi: 10.1016/j.jelechem.2010.12.031.

Abstract

We report on electroencephalograph (EEG) and electromyograph (EMG) measurements concurrently with real-time changes in L-glutamate concentration. These data reveal a link between sleep state and extracellular neurotransmitter changes in a freely-moving (tethered) mouse. This study reveals, for the first time in mice, that the extracellular L-glutamate concentration in the pre-frontal cortex (PFC) increases during periods of extended wakefulness, decreases during extended sleep episodes and spikes during periods of REM sleep. Individual sleep epochs (10 s in duration) were scored as wake, slow-wave (SW) sleep or rapid eye movement (REM) sleep, and then correlated as a function of time with measured changes in L-glutamate concentrations. The observed L-glutamate levels show a statistically significant increase of 0.86 ± 0.26 μM ( < 0.05) over 37 wake episodes recorded from all mice ( = 6). Over the course of 49 measured sleep periods longer than 15 min, L-glutamate concentrations decline by a similar amount (0.88 ± 0.37 μM, < 0.08). The analysis of 163 individual REM sleep episodes greater than one min in length across all mice ( = 6) demonstrates a significant rise in L-glutamate levels as compared to the 1 min preceding REM sleep onset (RM-ANOVA, DF = 20, = 6.458, < 0.001). The observed rapid changes in L-glutamate concentration during REM sleep last only between 1 and 3 min. The approach described can also be extended to other regions of the brain which are hypothesized to play a role in sleep. This study highlights the importance of obtaining simultaneous measurements of neurotransmitter levels in conjunction with sleep markers to help elucidate the underlying physiological and ultimately the genetic components of sleep.

摘要

我们报告了脑电图(EEG)和肌电图(EMG)测量结果,并同时监测了L-谷氨酸浓度的实时变化。这些数据揭示了自由活动(系绳)小鼠的睡眠状态与细胞外神经递质变化之间的联系。本研究首次在小鼠中发现,前额叶皮质(PFC)中的细胞外L-谷氨酸浓度在长时间清醒期间增加,在长时间睡眠期间降低,而在快速眼动(REM)睡眠期间则会飙升。将持续10秒的单个睡眠时段分为清醒、慢波(SW)睡眠或快速眼动(REM)睡眠,然后将其作为时间的函数与L-谷氨酸浓度的测量变化进行关联。从所有小鼠(n = 6)记录的37次清醒时段中观察到的L-谷氨酸水平在统计学上显著增加了0.86±0.26μM(P < 0.05)。在49个测量的超过15分钟的睡眠时段中,L-谷氨酸浓度下降了类似的量(0.88±0.37μM,P < 0.08)。对所有小鼠(n = 6)中163个长度超过1分钟的单个REM睡眠时段的分析表明,与REM睡眠开始前1分钟相比,L-谷氨酸水平显著升高(重复测量方差分析,DF = 20,F = 6.458,P < 0.001)。在REM睡眠期间观察到的L-谷氨酸浓度的快速变化仅持续1至3分钟。所描述的方法也可以扩展到大脑中其他被认为在睡眠中起作用的区域。这项研究强调了同时测量神经递质水平和睡眠标记物以帮助阐明睡眠潜在生理机制以及最终遗传成分的重要性。

相似文献

1
Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: A biosensor study of neuronal activity during sleep.
J Electroanal Chem (Lausanne). 2011 Jun 15;656(1-2):106-113. doi: 10.1016/j.jelechem.2010.12.031.
2
Lactate as a biomarker for sleep.
Sleep. 2012 Sep 1;35(9):1209-22. doi: 10.5665/sleep.2072.
3
Changes in extracellular glutamate levels in rat orbitofrontal cortex during sleep and wakefulness.
Arch Med Res. 2007 Jan;38(1):52-5. doi: 10.1016/j.arcmed.2006.07.004. Epub 2006 Nov 3.
4
5
Design and validation of a computer-based sleep-scoring algorithm.
J Neurosci Methods. 2004 Feb 15;133(1-2):71-80. doi: 10.1016/j.jneumeth.2003.09.025.
8
Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements.
Int J Neural Syst. 2016 Jun;26(4):1650017. doi: 10.1142/S0129065716500179. Epub 2016 Feb 16.
9
Effects of some H1-antagonists on the sleep-wake cycle in sleep-disturbed rats.
J Pharmacol Sci. 2007 Feb;103(2):201-6. doi: 10.1254/jphs.fp0061173. Epub 2007 Feb 8.
10
Baseline sleep-wake patterns in the pointer dog.
Physiol Behav. 1977 Aug;19(2):285-91. doi: 10.1016/0031-9384(77)90340-7.

引用本文的文献

1
Cross species review of the physiological role of D-serine in translationally relevant behaviors.
Amino Acids. 2023 Nov;55(11):1501-1517. doi: 10.1007/s00726-023-03338-6. Epub 2023 Oct 13.
3
Real-Time, Molecular Monitoring Using Electrochemical Aptamer Based Sensors: Opportunities and Challenges.
ACS Sens. 2022 Oct 28;7(10):2823-2832. doi: 10.1021/acssensors.2c01428. Epub 2022 Oct 7.
4
A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis.
Front Neurosci. 2022 Jun 30;16:798994. doi: 10.3389/fnins.2022.798994. eCollection 2022.
5
Chronic hypothalamic-pituitary-adrenal axis disruption alters glutamate homeostasis and neural responses to stress in male C57Bl6/N mice.
Neurobiol Stress. 2022 Jun 5;19:100466. doi: 10.1016/j.ynstr.2022.100466. eCollection 2022 Jul.
7
An Easily Compatible Eye-tracking System for Freely-moving Small Animals.
Neurosci Bull. 2022 Jun;38(6):661-676. doi: 10.1007/s12264-022-00834-9. Epub 2022 Mar 24.
8
9
The Bidirectional Link Between Sleep Disturbances and Traumatic Brain Injury Symptoms: A Role for Glymphatic Dysfunction?
Biol Psychiatry. 2022 Mar 1;91(5):478-487. doi: 10.1016/j.biopsych.2021.06.025. Epub 2021 Jul 14.
10
Isoflurane anesthesia disrupts the cortical metabolome.
J Neurophysiol. 2020 Dec 1;124(6):2012-2021. doi: 10.1152/jn.00375.2020. Epub 2020 Oct 28.

本文引用的文献

1
Role of glutamate in neuron-glia metabolic coupling.
Am J Clin Nutr. 2009 Sep;90(3):875S-880S. doi: 10.3945/ajcn.2009.27462CC. Epub 2009 Jul 1.
2
The blood-brain barrier and glutamate.
Am J Clin Nutr. 2009 Sep;90(3):867S-874S. doi: 10.3945/ajcn.2009.27462BB. Epub 2009 Jul 1.
3
Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states.
J Neurosci. 2009 Jan 21;29(3):620-9. doi: 10.1523/JNEUROSCI.5486-08.2009.
4
Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats.
Am J Physiol Regul Integr Comp Physiol. 2008 Dec;295(6):R2041-9. doi: 10.1152/ajpregu.90541.2008. Epub 2008 Sep 24.
5
In-vivo electrochemistry: what can we learn about living systems?
Chem Rev. 2008 Jul;108(7):2462-81. doi: 10.1021/cr068082i. Epub 2008 Jun 18.
6
Inhibition and brain work.
Neuron. 2007 Dec 6;56(5):771-83. doi: 10.1016/j.neuron.2007.11.008.
7
Changes in extracellular glutamate levels in rat orbitofrontal cortex during sleep and wakefulness.
Arch Med Res. 2007 Jan;38(1):52-5. doi: 10.1016/j.arcmed.2006.07.004. Epub 2006 Nov 3.
8
Neuron-glia metabolic coupling and plasticity.
J Exp Biol. 2006 Jun;209(Pt 12):2304-11. doi: 10.1242/jeb.02208.
9
Biosensors for real-time in vivo measurements.
Biosens Bioelectron. 2005 Jun 15;20(12):2388-403. doi: 10.1016/j.bios.2004.12.003. Epub 2005 Jan 15.
10
Extracellular ascorbate modulates cortically evoked glutamate dynamics in rat striatum.
Neurosci Lett. 2005 Apr 22;378(3):166-70. doi: 10.1016/j.neulet.2004.12.027. Epub 2005 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验