Suppr超能文献

一种用于具有输运、肿胀和生长的混合多孔超弹性的有限元模型。

A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth.

作者信息

Armstrong Michelle Hine, Buganza Tepole Adrián, Kuhl Ellen, Simon Bruce R, Vande Geest Jonathan P

机构信息

Graduate Interdisciplinary Program in Applied Mathematics, The University of Arizona, Tucson, AZ, United States of America.

Department of Mechanical Engineering, Stanford University, Stanford, CA, United States of America.

出版信息

PLoS One. 2016 Apr 14;11(4):e0152806. doi: 10.1371/journal.pone.0152806. eCollection 2016.

Abstract

The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues.

摘要

本文的目的是建立一个包含物质输运和生长的多孔超弹性统一理论,并使用在MATLAB中开发的有限元模型来证明该理论的能力。我们将体积生长理论与含物质输运和肿胀的混合多孔超弹性理论(MPHETS)相结合,以推导一种模拟生物软组织生长的新方法。针对仅固体生长和固体/流体生长情况,分别推导了守恒方程和本构方程。为生长的MPHETS新理论(GMPHETS)引入了一个轴对称有限元框架。为了说明该模型的能力,基于猪冠状动脉的实验数据,使用模型几何形状和材料参数,考虑了几个有限元测试示例问题。考虑了多种生长定律,包括时间驱动、浓度驱动和应力驱动生长。将时间驱动生长与精确解析解进行比较以验证模型。对于浓度依赖性生长,改变扩散系数(代表药物变化)会从根本上改变生长行为。我们进一步证明,对于应力依赖性的动脉仅固体生长情况,在相同生长时间内使用相同生长定律时,MPHETS模型的生长比超弹性模型的生长导致更均匀的环向应力。这可能对腔内压力下软组织中残余应力的产生有影响。据我们所知,本文首次全面描述了具有生长的MPHETS模型。所开发的计算框架可与新颖的体外和体内实验方法协同使用,以确定各种软组织的主导生长定律。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f11/4831841/c5a7221c1a4f/pone.0152806.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验