Kinsey Spencer, Kazimierczak Katarzyna, Camazón Pablo Andrés, Chen Jiayu, Adali Tülay, Kochunov Peter, Adhikari Bhim M, Ford Judith, van Erp Theo G M, Dhamala Mukesh, Calhoun Vince D, Iraji Armin
Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA USA.
Neuroscience Institute, Georgia State University, Atlanta, GA USA.
Nat Ment Health. 2024;2(12):1464-1475. doi: 10.1038/s44220-024-00341-y. Epub 2024 Nov 21.
Schizophrenia is a chronic brain disorder associated with widespread alterations in functional brain connectivity. Although data-driven approaches such as independent component analysis are often used to study how schizophrenia impacts linearly connected networks, alterations within the underlying nonlinear functional connectivity structure remain largely unknown. Here we report the analysis of networks from explicitly nonlinear functional magnetic resonance imaging connectivity in a case-control dataset. We found systematic spatial variation, with higher nonlinear weight within core regions, suggesting that linear analyses underestimate functional connectivity within network centers. We also found that a unique nonlinear network incorporating default-mode, cingulo-opercular and central executive regions exhibits hypoconnectivity in schizophrenia, indicating that typically hidden connectivity patterns may reflect inefficient network integration in psychosis. Moreover, nonlinear networks including those previously implicated in auditory, linguistic and self-referential cognition exhibit heightened statistical sensitivity to schizophrenia diagnosis, collectively underscoring the potential of our methodology to resolve complex brain phenomena and transform clinical connectivity analysis.
精神分裂症是一种慢性脑部疾病,与大脑功能连接的广泛改变有关。尽管诸如独立成分分析等数据驱动方法常被用于研究精神分裂症如何影响线性连接网络,但潜在的非线性功能连接结构中的改变在很大程度上仍不为人知。在此,我们报告了对一个病例对照数据集中明确的非线性功能磁共振成像连接网络的分析。我们发现了系统性的空间变化,核心区域内的非线性权重更高,这表明线性分析低估了网络中心内的功能连接。我们还发现,一个包含默认模式、扣带回 - 岛叶和中央执行区域的独特非线性网络在精神分裂症中表现出连接不足,这表明通常隐藏的连接模式可能反映了精神病中低效的网络整合。此外,包括那些先前与听觉、语言和自我参照认知有关的非线性网络对精神分裂症诊断表现出更高的统计敏感性,共同强调了我们的方法在解决复杂脑现象和变革临床连接性分析方面的潜力。