Sheldon Kimberly S, Dillon Michael E
*Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
*Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA.
Integr Comp Biol. 2016 Jul;56(1):110-9. doi: 10.1093/icb/icw005. Epub 2016 Apr 13.
Studies have typically used shifts in mean temperatures to make predictions about the biotic impacts of climate change. Though shifts in mean temperatures correlate with changes in phenology and distributions, other hidden, or cryptic, changes in temperature, such as temperature variation and extreme temperatures, could pose greater risks to species and ecological communities. Yet, these cryptic temperature changes have received relatively little attention because mean temperatures are readily available and the organism-appropriate temperature response is often elusive. An alternative to using mean temperatures is to view organisms as physiological filters of hourly temperature data. We explored three classes of physiological filters: (1) nonlinear thermal responses using performance curves of insect fitness, (2) cumulative thermal effects using degree-day models for corn emergence, and (3) threshold temperature effects using critical thermal maxima and minima for diverse ectotherms. For all three physiological filters, we determined the change in biological impacts of hourly temperature data from a standard reference period (1961-90) to a current period (2005-10). We then examined how well mean temperature changes during the same time period predicted the biotic impacts we determined from hourly temperature data. In all cases, mean temperature alone provided poor predictions of the impacts of climate change. These results suggest that incorporating high frequency temperature data can provide better predictions for how species will respond to temperature change.
研究通常利用平均温度的变化来预测气候变化对生物的影响。虽然平均温度的变化与物候和分布的变化相关,但温度的其他隐藏或隐秘变化,如温度变异性和极端温度,可能对物种和生态群落构成更大风险。然而,这些隐秘的温度变化受到的关注相对较少,因为平均温度很容易获得,而且适合生物体的温度响应往往难以捉摸。使用平均温度的一种替代方法是将生物体视为每小时温度数据的生理过滤器。我们探索了三类生理过滤器:(1)使用昆虫适合度性能曲线的非线性热响应,(2)使用玉米出苗的度日模型的累积热效应,以及(3)使用不同变温动物的临界热最大值和最小值的阈值温度效应。对于所有这三类生理过滤器,我们确定了每小时温度数据从标准参考期(1961 - 90年)到当前期(2005 - 10年)的生物影响变化。然后,我们研究了同一时期平均温度的变化对我们根据每小时温度数据确定的生物影响的预测程度。在所有情况下,仅平均温度对气候变化影响的预测都很差。这些结果表明,纳入高频温度数据可以更好地预测物种将如何应对温度变化。