Suppr超能文献

追踪出芽酵母中的二酰甘油和磷脂酸库

Tracking Diacylglycerol and Phosphatidic Acid Pools in Budding Yeast.

作者信息

Ganesan Suriakarthiga, Shabits Brittney N, Zaremberg Vanina

机构信息

Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.

出版信息

Lipid Insights. 2016 Apr 6;8(Suppl 1):75-85. doi: 10.4137/LPI.S31781. eCollection 2015.

Abstract

Phosphatidic acid (PA) and diacylglycerol (DAG) are key signaling molecules and important precursors for the biosynthesis of all glycerolipids found in eukaryotes. Research conducted in the model organism Saccharomyces cerevisiae has been at the forefront of the identification of the enzymes involved in the metabolism and transport of PA and DAG. Both these lipids can alter the local physical properties of membranes by introducing negative curvature, but the anionic nature of the phosphomonoester headgroup in PA sets it apart from DAG. As a result, the mechanisms underlying PA and DAG interaction with other lipids and proteins are notoriously different. This is apparent from the analysis of the protein domains responsible for recognition and binding to each of these lipids. We review the current evidence obtained using the PA-binding proteins and domains fused to fluorescent proteins for in vivo tracking of PA pools in yeast. In addition, we present original results for visualization of DAG pools in yeast using the C1 domain from mammalian PKCδ. An emerging first cellular map of the distribution of PA and DAG pools in actively growing yeast is discussed.

摘要

磷脂酸(PA)和二酰基甘油(DAG)是关键的信号分子,也是真核生物中所有甘油脂质生物合成的重要前体。在模式生物酿酒酵母中进行的研究一直处于鉴定参与PA和DAG代谢及转运的酶的前沿。这两种脂质都可以通过引入负曲率来改变膜的局部物理性质,但PA中磷酸单酯头部基团的阴离子性质使其有别于DAG。因此,PA和DAG与其他脂质及蛋白质相互作用的潜在机制明显不同。这从负责识别和结合这些脂质的蛋白质结构域分析中可以明显看出。我们回顾了目前使用与荧光蛋白融合的PA结合蛋白和结构域对酵母中PA库进行体内追踪所获得的证据。此外,我们展示了使用哺乳动物蛋白激酶Cδ的C1结构域对酵母中DAG库进行可视化的原始结果。本文还讨论了在活跃生长的酵母中PA和DAG库分布的首张细胞图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fd/4824325/4e60b00bbaa4/lpi-suppl.1-2015-075f1.jpg

相似文献

1
Tracking Diacylglycerol and Phosphatidic Acid Pools in Budding Yeast.
Lipid Insights. 2016 Apr 6;8(Suppl 1):75-85. doi: 10.4137/LPI.S31781. eCollection 2015.
2
Metabolic control of cytosolic-facing pools of diacylglycerol in budding yeast.
Traffic. 2019 Mar;20(3):226-245. doi: 10.1111/tra.12632. Epub 2019 Jan 28.
3
Structural anatomy of Protein Kinase C C1 domain interactions with diacylglycerol and other agonists.
Nat Commun. 2022 May 16;13(1):2695. doi: 10.1038/s41467-022-30389-2.
4
Triacylglycerol biosynthesis in yeast.
Appl Microbiol Biotechnol. 2003 May;61(4):289-99. doi: 10.1007/s00253-002-1212-4. Epub 2003 Jan 29.
6
Tubular ER Associates With Diacylglycerol-Rich Structures During Lipid Droplet Consumption.
Front Cell Dev Biol. 2020 Jul 29;8:700. doi: 10.3389/fcell.2020.00700. eCollection 2020.
7
Phosphatidic Acid Sequesters Sec18p from cis-SNARE Complexes to Inhibit Priming.
Traffic. 2016 Oct;17(10):1091-109. doi: 10.1111/tra.12423. Epub 2016 Jul 24.
8
Mechanisms whereby insulin increases diacylglycerol in BC3H-1 myocytes.
Biochem J. 1988 Nov 15;256(1):175-84. doi: 10.1042/bj2560175.
9
Phosphatidic acid in membrane rearrangements.
FEBS Lett. 2019 Sep;593(17):2428-2451. doi: 10.1002/1873-3468.13563. Epub 2019 Aug 31.

引用本文的文献

1
Phosphatidic acid drives spatiotemporal distribution of Pex30 at ER-LD contact sites.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202405162. Epub 2025 May 23.
2
Molecular Mechanisms of Pathogenic Fungal Virulence Regulation by Cell Membrane Phospholipids.
J Fungi (Basel). 2025 Mar 26;11(4):256. doi: 10.3390/jof11040256.
3
Cholesterol affects the binding of proteins to phosphatidic acid without influencing its ionization properties.
J Lipid Res. 2025 Mar;66(3):100749. doi: 10.1016/j.jlr.2025.100749. Epub 2025 Jan 27.
4
Diacylglycerol Kinases and Its Role in Lipid Metabolism and Related Diseases.
Int J Mol Sci. 2024 Dec 9;25(23):13207. doi: 10.3390/ijms252313207.
5
Diacylglycerol metabolism and homeostasis in fungal physiology.
FEMS Yeast Res. 2024 Jan 9;24. doi: 10.1093/femsyr/foae036.
6
Regulation of yeast polarized exocytosis by phosphoinositide lipids.
Cell Mol Life Sci. 2024 Nov 19;81(1):457. doi: 10.1007/s00018-024-05483-x.
10
Substrate recognition mechanism of the endoplasmic reticulum-associated ubiquitin ligase Doa10.
Nat Commun. 2024 Mar 11;15(1):2182. doi: 10.1038/s41467-024-46409-2.

本文引用的文献

1
The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites.
J Cell Biol. 2015 Nov 23;211(4):829-44. doi: 10.1083/jcb.201502070. Epub 2015 Nov 16.
3
Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast.
Biochim Biophys Acta. 2015 Nov;1851(11):1450-64. doi: 10.1016/j.bbalip.2015.08.003. Epub 2015 Aug 12.
4
Lipid partitioning at the nuclear envelope controls membrane biogenesis.
Mol Biol Cell. 2015 Oct 15;26(20):3641-57. doi: 10.1091/mbc.E15-03-0173. Epub 2015 Aug 12.
7
C1 domains: structure and ligand-binding properties.
Chem Rev. 2014 Dec 24;114(24):12108-31. doi: 10.1021/cr300481j. Epub 2014 Nov 6.
8
Regulation of the transbilayer movement of diacylglycerol in the plasma membrane.
Biochimie. 2014 Dec;107 Pt A:43-50. doi: 10.1016/j.biochi.2014.09.014. Epub 2014 Sep 18.
9
A dynamic interface between vacuoles and mitochondria in yeast.
Dev Cell. 2014 Jul 14;30(1):95-102. doi: 10.1016/j.devcel.2014.06.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验